广东工业大学学报 ›› 2017, Vol. 34 ›› Issue (04): 84-88.doi: 10.12052/gdutxb.160010

• 综合研究 • 上一篇    下一篇

随机变时滞神经网络的输入状态稳定性

张治中, 彭世国   

  1. 广东工业大学 自动化学院, 广东 广州 510006
  • 收稿日期:2016-01-16 出版日期:2017-07-09 发布日期:2017-07-09
  • 作者简介:张治中(1990–),男,硕士研究生,主要研究方向为随机神经网络的输入状态稳定性.
  • 基金资助:

    广东省自然科学基金资助项目(S20130013034,2015A030313485)

Input-to-state Stability for Stochastic Neural Networks with Time-Varying Delay

Zhang Zhi-zhong, Peng Shi-guo   

  1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2016-01-16 Online:2017-07-09 Published:2017-07-09

摘要:

给出了一种新的稳定性判据∶基于线性矩阵不等式(LMI)的输入状态稳定性判据.基于模型变换,通过构造合适的Lyapunov函数,利用随机分析理论、伊藤(Itô's)公式和一些不等式方法,以线性矩阵不等式形式给出了随机变时滞神经网络的随机输入状态稳定的充分条件.然后通过数值算例说明所提出的方法有较小的保守性,表明所提出方法的有效性.

关键词: 随机神经网络, 变时滞, 随机输入状态稳定, Lyapunov函数, 线性矩阵不等式

Abstract:

A new stability criterion based on the linear matrix inequality (LMI) input-to-state stability criterion is given. Based on model transformation, input-to-state stability of Stochastic neural networks with Time-Varying Delay is given a sufficient condition in form of linear matrix inequality by constructing appropriate Lyapunov-Krasovskii functional, stochastic analysis theory and Itô's formula and applying some inequality approach. Then, the proposed method is proven to be less conservative by illustrating with the numerical examples, which shows the effectiveness of the method.

Key words: stochastic neural network, time-varying delay, Input-to-state stability, Lyapunov-Krasovskii functional, linear matrix inequality

中图分类号: 

  • TP273

[1] 刘勇健, 刘义建. 人工神经用于岩体工程的方法改进[J]. 广东工业大学学报, 2002, 19(1): 21-25.LIU Y J, LIU Y J. The improving methods of artificial neural network in Geo-techn-ical engineering[J]. Journal of Guangdong University and Technology, 2002, 19(1): 21-25.
[2] ZHU Q X, CAO J D. Mean-square exponential input-to-state stability of stochastic delayed neural networks [J]. Neurocomputing, 2014. 131(0): 157-163.
[3] SONTAG E D. Smooth stabilization implies coprime factorization [J]. IEEE Trans. Autom. Control, 1989. 34(4): 435-443.
[4] BLYTHE S, MAO X R, LIAO X L. Stability of stochastic delay neural networks [J]. Journal of the Franklin Institute 2001. 338(0): 481-495.
[5] 胡宣达. 随机微分方程稳定性理论[M]. 南京:南京大学出版社, 1990.
[6] MAO X R. Exponential Stability of Stochastic Differential Equations [M]. New York: Marcel Dekker Inc, 1994.
[7] GRUNE L. Input-to-state dynamical stability and its Lyapunov function characterization. Automatic Control, IEEE Transactions on [J]. 2002. 47(9): 1499-1504.
[8] TAI Z. Input-to-state stability for Lur’e stochastic distributed parameter control systems [J]. Applied Mathematics Letters, 2012. 25(4): 706-711.
[9] AHN C K. Passive learning and input-to-state stability of switched Hopfield neural networks with time-delay [J]. Information Sciences, 2010, 180(23): 4582-4594.
[10] ALWAN MOHAMAD S, LIU Z, XIE W C. On design of robust reliable control and input-to-state stabilization of uncertain stochastic systems with state delay [J]. Communications in Nonlinear Science and Numerical Simulation, 2013. 18(4): 1047-1056.
[11] HUANG H Y, DU Q S, KANG X B. Global exponential stability of neutral high-order stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays [J]. ISA Transactions, 2013. 52(6): 759-767.
[12] 江明辉, 廖晓昕. 变时滞随机微分方程的指数稳定性[J]. 数学物理学报, 2006. 6(6): 254-258.JIANG M H, LIAO X X. Exponential stability of stochastic differential equations with variable delays [J]. Journal of Mathematical Physics, 2006. 6(6): 254-258.
[13] ZHU Q X, CAO J D, RAKKIYAPPAN R. Exponential input-to-state stability of stochastic Cohen–Grossberg neural networks with mixed delays [J]. Nonlinear Dynamics, 2015, 79(2): 1085-1098.
[14] ZHOU D M, YU S H, ZHANG Z Q. New LMI-based conditions for global exponential stability to a class of Cohen–Grossberg BAM networks with delays [J]. Neurocomputing, 2013. 121(18): 512-522.
[15] LI X L, WANG M R. Novel robust stability criteria for stochastic hopfield neural network with time-varying delays [M]. Neural Information Processing. Springer Berlin Heidelberg, 2012: 474-479.
[16] ZHAO F, ZHANG Q L, YAN X G, et al. Stochastic input-to-state stability and H∞ filtering for a class of stochastic nonlinear systems [J]. Applied Mathematics & Computation, 2014, 227: 672-686.

[1] 罗贺富, 彭世国. 多时变时滞的多智能体系统的分布式编队控制[J]. 广东工业大学学报, 2017, 34(04): 89-96.
[2] 朱怀念, 张成科, 曹铭, 宾宁. 广义随机仿射系统的线性二次控制[J]. 广东工业大学学报, 2016, 33(02): 24-30.
[3] 梁瑞时, 金朝永. 扰动奇异时滞大系统鲁棒镇定[J]. 广东工业大学学报, 2015, 32(1): 133-137.
[4] 韦俊青,金朝永,刘瑾. 基于状态观测器的一类不确定性线性系统鲁棒保性能控制器设计[J]. 广东工业大学学报, 2013, 30(2): 79-83.
[5] 鲁叶,彭世国. T-S模糊随机时滞系统的鲁棒控制[J]. 广东工业大学学报, 2013, 30(1): 68-72.
[6] 王琳. 随机延迟微分方程的正整体解及矩有界[J]. 广东工业大学学报, 2013, 30(1): 73-75.
[7] 陈孟伟,金朝永,卢萍,朱婧丽. 基于随机丢包的网络控制系统控制器设计[J]. 广东工业大学学报, 2012, 29(2): 85-88.
[8] 陈孟伟,金朝永,朱婧丽,卢萍. 随机区间时延的网络控制系统控制器设计[J]. 广东工业大学学报, 2012, 29(1): 59-63.
[9] 谢淑芳. 一类具有时变时滞的中立型微分系统的稳定性分析[J]. 广东工业大学学报, 2011, 28(3): 77-82.
[10] 朱婧丽1, 金朝永1, 郭红萍2. 具有参考时变状态的多智能体的H∞一致性[J]. 广东工业大学学报, 2011, 28(3): 83-86.
[11] 刘俊, 金朝永. 一类连续T-S模糊控制系统的稳定性分析[J]. 广东工业大学学报, 2010, 27(4): 58-61.
[12] 肖元, 金朝永. 一类基于观测器的短时延网络控制系统的建模和稳定性分析[J]. 广东工业大学学报, 2010, 27(4): 85-88.
[13] 马伟豪, 金朝永. 不确定时延网络控制系统的建模与稳定性分析[J]. 广东工业大学学报, 2010, 27(3): 27-30.
[14] 曾爱华1 , 金朝永1 , 任建功 1, 陈 君2. 持续有界扰动下一类不确定时变时滞大系统的分散鲁棒镇定[J]. 广东工业大学学报, 2010, 27(2): 71-76.
[15] 任建功; 金朝永; 曾爱华; 范永青; . 不确定中立型时滞系统相关稳定性判据[J]. 广东工业大学学报, 2009, 26(3): 82-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!