广东工业大学学报 ›› 2013, Vol. 30 ›› Issue (1): 73-75.doi: 10.3969/j.issn.1007-7162.2013.01.013

• 综合研究 • 上一篇    下一篇

随机延迟微分方程的正整体解及矩有界

王琳   

  1. 广东工业大学 应用数学学院,广东 广州 510520
  • 收稿日期:2012-10-04 出版日期:2013-03-30 发布日期:2013-03-30
  • 作者简介:王琳(1980-),女,讲师,博士,主要研究方向为随机动力系统理论.
  • 基金资助:

    广东工业大学博士启动基金资助项目(093054)

Uniqueness and Moment Boundedness of Global Positive Solutions  to the Stochastic Delay Differential Equations

Wang Lin   

  1. School of Applied Mathematics,Guangdong University of Technology, Guangzhou 510520, China
  • Received:2012-10-04 Online:2013-03-30 Published:2013-03-30

摘要: 主要构造了Lyapunov函数V(x),然后给出一个一般条件, 应用Khasminskii-Mao定理,得到非线性随机延迟微分方程(SDDEs)正整体解存在,且这个解p阶矩有界.

关键词: 正整体解;Lyapunov函数;矩有界

Abstract: It constructs a Lyapunov  function V(x) and then gives the general conditions to obtain unique global positive solutions to nonlinear Stochastic Delay Differential Equations(SDDEs) and at the same time p th-moment boundedness of the solutions. The above work is a practical application of the Khasminskii-Mao theorem.

Key words: global positive solutions; Lyapunov function; moment boundedness

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!