广东工业大学学报 ›› 2017, Vol. 34 ›› Issue (05): 91-95.doi: 10.12052/gdutxb.160171

• 综合研究 • 上一篇    下一篇

紫外激发GdNbO4:Tb3+色度可调荧光粉的制备和发光性能的研究

张璐, 易双萍, 赵韦人, 胡小雪   

  1. 广东工业大学 物理与光电工程学院, 广东 广州 51006
  • 收稿日期:2016-12-15 出版日期:2017-09-09 发布日期:2017-07-10
  • 作者简介:张璐(1990-)女,硕士研究生,主要研究方向为无机非金属光电材料.
  • 基金资助:
    广东省科技发展专项(2016A010103029);广州市科技计划项目科学研究专项(201607010179)

Synthesis and Photoluminescence Properties of Multicolor Tunable GdNbO4: Tb3+ Phosphors

Zhang Lu, Yi Shuang-ping, Zhao Wei-ren, Hu Xiao-xue   

  1. School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 51006, China
  • Received:2016-12-15 Online:2017-09-09 Published:2017-07-10

摘要: 采用高温固相法制备了GdNbO4:Tb3+荧光粉,系统地分析了该荧光粉的物相组成、漫反射光谱、荧光光谱以及荧光寿命衰减曲线.GdNbO4作为一种自激活发光的荧光粉,在200~325 nm范围有很宽的吸收.当掺杂了Tb3+之后,掺杂离子会占据基质的格点位置并伴有基质到Tb3+的能量转移.与此同时,基质在紫外区域的吸收会变强.通过研究计算分析可得激活剂Tb3+的电偶极矩-电偶极矩相互作用是发生浓度猝灭的原因.

关键词: GdNbO4, 光致发光, 能量传递

Abstract: A color-tunable phosphor based on Tb3+ doped GdNbO4 were synthesized by a traditional solid-state reaction method. X-ray powder diffraction (XRD), diffused reflectance spectra, photoluminescence spectra and decay curves were utilized to characterize the as-prepared phosphors. The GdNbO4 host was proved to be a self-activated phosphor with broad absorption range from 200 to 325 nm. When Tb3+ ions were doped into the host lattice, the energy transfer from host to Tb3+ was identified. And the broad absorption in the UV region was changed and enhanced. Furthermore, the electric dipole-dipole interaction is the major mechanism for the concentration quenching.

Key words: GdNbO4, photoluminescence, energy transfer

中图分类号: 

  • TB321
[1] FELDMANN C, JÜSTEL T, RONDA C R, et al. Inorganic luminescence materials:100 years of research and application[J]. Adv Funct Mater, 2003, 13(7):511-516. [2] 黄保裕, 罗莉, 王银海, 等. Ba<sub>3</sub>Y(PO<sub>4</sub>)<sub>3</sub>:Sm<sup>3+</sup>, Eu<sup>3+</sup>红光荧光粉的发光和能量传递的研究[J]. 广东工业大学学报, 2017, 34(2):40-47.HUANG B Y, LUO L, WANG Y H, et al. Luminescent characteristics and energy transfer of Ba<sub>3</sub>Y(PO<sub>4</sub>)<sub>3</sub>:Sm<sup>3+</sup>, Eu<sup>3+</sup> red phosphor[J]. Journal of Guangdong University of Technology, 2017, 34(2):40-47. [3] DONG Q, WANG Y, WANG Z, et al. Self-purification-dependent unique photoluminescence properties of YBO<sub>3</sub>:Eu<sup>3+</sup> nanophoephors under VUV excitation[J]. J Phys Chen C, 2010, 114(20):9245-9250. [4] LIU X, LIN J. LaGaO<sub>3</sub>:A (A=Sm<sup>3+</sup> and/or Tb<sup>3+</sup>) as promising phosphors for field emission displays[J]. J Mater Chem, 2008, 18(2):221-228. [5] 邓玲玲, 赵韦人, 方夏冰. 荧光粉Ba<sub>3-<em>x</em>-<em>y</em></sub>P<sub>4</sub>O<sub>13</sub>:<em>x</em>Ce<sup>3+</sup>, <em>y</em>Tb<sup>3+</sup>的光谱分析[J]. 广东工业大学学报, 2013, 30(2):28-32.DENG L L, ZHAO W R, FANG X B. Spectral analysis of Ce<sup>3+</sup> and Tb<sup>3+</sup> ions Co-Doped Ba<sub>3</sub>P<sub>4</sub>O<sub>13</sub> Phosphor[J]. Journal of Guangdong University of Technology, 2013, 30(2):28-32. [6] SHI Y, WANG Y, WANG D, et al. Synthesis of hexagonal prism (La, Ce, Tb) PO<sub>4</sub> phosphors by precipitation method[J]. Cryst Growth Des, 2012, 12(4):1785-1791. [7] GENG J, CHEN Y, GU G, et al. Tian. Tunable white-light-emitting Sr<sub>2-<em>x</em></sub>Ca<em><sub>x</sub></em>Nb<sub>2</sub>O<sub>7</sub>:Pr<sup>3+</sup> phosphor by adjusting the concentration of Ca<sup>2+</sup> ion[J]. Opt Mater, 2014, 36(7):1093-1096. [8] GUO C F, YANG H, JEONG H K. Preparation and luminescence properties of phosphor MGd<sub>2</sub>(MoO<sub>4</sub>)<sub>4</sub>:Eu<sup>3+</sup> (M=Ca, Sr and Ba)[J]. J Lumin, 2010, 130(8):1390-1393. [9] BLASSE G. Energy transfer in oxidic phosphors[J]. Phys Lett A, 1968, 28(6):444-445. [10] BRIXNER L H. New X-Ray phosphors[J]. Mater Chem Phys, 1987, 16(3-4):253-281. [11] BLASSE G, BRIXNER L H. Ultraviolet emission from ABO<sub>4</sub>-type niobates, tantalates and tungstates[J]. Chem Phys Lett, 1990, 173(5-6):409-411. [12] LYU Y, TANG X, YAN L, et al. Synthesis and luminescent properties of GdNbO<sub>4</sub>:RE<sup>3+</sup>(RE=Tm, Dy) nanocrystalline phosphors via the sol-gel process[J]. J Phys Chem C, 2013, 117(42):21972-21980. [13] YANG M, ZHAO X, JI Y, et al. Hydrothermal approach and luminescent properties for the synthesis of orthoniobates GdNbO<sub>4</sub>:Ln<sup>3+</sup> (Ln=Dy, Eu) single crystals under high-temperature high-pressure conditions[J]. New J Chem, 2014, 38(9):4249-4257. [14] LIU X, LYU Y, CHEN C, et al. Synthesis and luminescence properties of YNbO<sub>4</sub>:A (A=Eu<sup>3+</sup> and/or Tb<sup>3+</sup>) nanocrystalline phosphors via a sol-gel process[J]. J Phys Chem C, 2014, 118(47):27516-27524. [15] LUO W, LI R, CHEN X. Host-sensitized luminescence of Nd<sup>3+</sup> and Sm<sup>3+</sup> ions incorporated in anatase titania nanocrystals[J]. J Phys Chem C, 2009, 113(20):8772-8777. [16] PAVANI K, SURESH K J, RAMA M L. Photoluminescence properties of Tb<sup>3+</sup> and Eu<sup>3+</sup> ions co-doped SrMg<sub>2</sub>La<sub>2</sub>W<sub>2</sub>O<sub>12</sub> phosphors for solid state lighting applications[J]. J Alloys Compd, 2014, 586(15):722-729. [17] DEXTER D L. A theory of sensitized luminescence in solids[J]. J Chem Phys, 1953, 21(5):836-850. [18] WANG Z, LI P, YANG Z, et al. A novel red phosphor BaZn<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>:Sm<sup>3+</sup>, R<sup>+</sup>(R=Li, Na, K)[J]. J Lumin, 2012, 132(8):1944-1948.
[1] 廖子锋, 赵韦人, 黄浩, 宋静周. 高浓度锰掺杂Ca14Zn6Al10O35荧光粉的近红外第二窗口发光[J]. 广东工业大学学报, 2021, 38(01): 97-103,110.
[2] 梁柏鑫, 易双萍, 胡耕樵, 方志雄, 赵韦人. 基于能量传递可调色度ZnNb2O6:Dy3+, Eu3+荧光粉的制备及其发光性能研究[J]. 广东工业大学学报, 2020, 37(01): 34-41.
[3] 何景祺, 罗莉. 新型近紫外激发单一基质荧光粉Sr2V2O7:Ln(Ln=Eu3+, Dy3+, Sm3+, Tb3+)的研究[J]. 广东工业大学学报, 2019, 36(01): 68-74.
[4] 柳滢春, 郭建维, 罗涛, 吴彤彪. (乙烯基咔唑-对金刚烷基苯乙烯)共聚物的合成与光致发光性能[J]. 广东工业大学学报, 2018, 35(01): 73-76.
[5] 黄保裕, 罗莉, 王银海, 韩春龙. Ba3Y(PO4)3:Sm3+, Eu3+红光荧光粉的发光和能量传递的研究[J]. 广东工业大学学报, 2017, 34(02): 40-47.
[6] 黄军,易双萍,冼洁强,张璐. Eu3+和Dy3+共掺单基质Ba2CaWO6白色荧光粉的合成与发光性质[J]. 广东工业大学学报, 2016, 33(02): 76-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!