广东工业大学学报 ›› 2018, Vol. 35 ›› Issue (04): 111-118.doi: 10.12052/gdutxb.170162

• 综合研究 • 上一篇    下一篇

碳化棉织物作为微生物燃料电池廉价阳极材料的研究

曾丽珍1,2, 何苗1   

  1. 1. 广东工业大学 物理与光电工程学院, 广东 广州 510006;
    2. 华南师范大学 分析测试中心, 广东 广州 510006
  • 收稿日期:2017-11-30 出版日期:2018-07-09 发布日期:2018-06-06
  • 通信作者: 何苗(1965–),男,教授,博士生导师,主要研究方向为LED材料.E-mail:herofategdut@126.com E-mail:herofategdut@126.com
  • 作者简介:曾丽珍(1985-),女,实验师,博士研究生,主要研究方向为微生物燃料电池电极材料.
  • 基金资助:
    广东省科技计划项目(2014B050505020,2015B010114007,2014B090904045);广州市科技计划项目(201604016095,2016201604030027);华南师范大学青年教师科研培育基金项目(15KJ12)

Application of Carbonized Waste Cotton Textiles as Electrode in Microbial Fuel Cells

Zeng Li-zhen1,2, He Miao1   

  1. 1. School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. Analysis and Testing Center, South China Normal University, Guangzhou 510006, China
  • Received:2017-11-30 Online:2018-07-09 Published:2018-06-06
  • Supported by:
     

摘要: 使用廉价的日常废棉纺织物作为原材料,通过碳化处理制备了一种新颖的、生物相容性的、多孔的、高导电性的、低成本的碳化棉织物(CCTs)电极,并且用于微生物燃料电池(MFCs)的阳极材料.采用场发射扫描电子显微镜(FESEM),X射线衍射(XRD),拉曼光谱(Raman),傅里叶变换红外光谱(FTIR),X射线光电子能谱(XPS)和Brunauer-Emmett-Teller (BET)等方法进行表征.表征结果显示,CCT-1000电极的表面比较粗糙,比表面积为209.64 m2·g–1,大大增强了电极与细菌之间的相互作用,从而增加了细菌在电极上的负载量,促进了细菌胞外电子传递(EET).使用CCT-1000阳极的MFC的输出功率为738±20 mW·m–2,比使用商业碳毡阳极的MFC的输出功率提高了43%.另外充分利用廉价的废棉纺织物,可以大大降低MFCs的成本,同时减少环境污染问题.

关键词: 碳化, 棉织物, 廉价, 微生物燃料电池, 阳极

Abstract: A new biocompatible, porous, high conductive and low-cost electrode, carbonized waste cotton textiles (CCTs) was developed as anode electrode materials for membraneless microbial fuel cells (MFCs). The CCTs are characterized by using Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectrum (FTIR), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) method. The results show that the CCT-1000 electrode provides a low electrical resistivity (7.56 Ω·sq-1) and a large surface area (209.64 m2·g-1) for bacterial growth, hence greatly increasing the loading amount of bacterial cells and facilitating the extracellar electron transfer (EET). The MFC using the CCT-1000 anode delivers a power output of 738±20 mW·m-2, which is 43% higher than that of commercial carbon felt anode with the same configuration and non-catalyst modification. Moreover, making full use of the cheap electrode and membraneless configuration can greatly reduce cost of MFCs.

Key words: carbonization, waste cotton textiles, low-cost, microbial fuel cell, anode

中图分类号: 

  • TM911.4
[1] ZENG L Z, ZHAO S F, WANG Y Q, et al. Ni/β-Mo2C as noble-metal-free anodic electrocatalyst for microbial fuel cell based on Klebsiella pneumonia[J]. International Journal of Hydrogen Energy, 2012, 37(5):4590-4596.
[2] CUI D, WANG Y Q, XING L D, et al. Which determines power generation of microbial fuel cell based on carbon anode, surface morphology or oxygen-containing group[J]. International Journal of Hydrogen Energy, 2014, 39(27):15081-15087.
[3] MEHDINIA A, ZIAEI E, JABBARI A. Facile microwave-assisted synthesized reduced frapheneoxide/tin oxidenano composite and using as anode material of microbial fuel cell to improve power generation[J]. International Journal of Hydrogen Energy, 2014, 39(20):10724-10730.
[4] XIE X, YU G, LIU N, et al. Graphene-sponges as high-performance low-cost anodes for microbial fuel cells[J]. Energy & Environmental Science, 2012, 5(5):6862-6866.
[5] YANG Y, LIU T Y, LIAO Q, et al. A three-dimensional nitrogen-doped graphene aerogel-activated carbon composite catalyst that enables low-cost microfluidic microbial fuel cells with superior performance[J]. Journal of Materials Chemistry A, 2016, 4:15913-15919.
[6] FAN Y, SHARBROUGH E, LIU H. Quantification of the internal resistance distribution of microbial fuel cells[J]. Environmental Science & Technology, 2008, 42(21):8101-8107.
[7] YUAN Y, ZHOU SG, LIU Y, et al. Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells[J]. Environmental Science & Technology, 2013, 47(24):14525-14532.
[8] CHAUDHURI S K, LOVLEY D R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells[J]. Nature Biotechnology, 2003, 21(10):1229-1232.
[9] LOGAN B, CHENG S, WATSON V, et al. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells[J]. Environmental Science & Technology, 2007, 41(9):3341-3346.
[10] TENDER L M, REIMERS C E, STECHER H A, et al. Harnessing microbially generated power on the seafloor[J]. Nature Biotechnology, 2002, 20(8):821-825.
[11] HE Z, MINTEER S D, ANGENENT L T. Electricity generation from artificial wastewater using an upflow microbial fuel cell[J]. Environmental Science & Technology, 2005, 39(14):5262-5267.
[12] CHENG S, LIU H, LOGAN B E. Increased power generation in a continuousflow MFC with advective flow through the porous anode and reduced electrode spacing[J]. Environmental Science & Technology, 2006, 40(7):2426-2432.
[13] ADACHI M, YAMAMOTO R, SHIMOMURA T, et al. Microbial fuel cells witha mediator-polymer modified anode[J]. Electrochemistry, 2010, 78(10):814-816.
[14] FENG C, MA L, LI F, et al. A polypyrrole/anthraquinone-2, 6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells[J]. Biosensors and Bioelectronics, 2010, 25(6):1516-1520.
[15] LAI B, TANG X, LI H, et al. Power production enhancement with a polyaniline modified anode in microbial fuel cells[J]. Biosensors and Bioelectronics, 2011, 28(1):373-377.
[16] TSAI H Y, WU C C, LEE C Y, et al. Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes[J]. Journal of Power Sources, 2009, 194(1):199-205.
[17] SUN J J, ZHAO H Z, YANG Q Z, et al. A novel layer-by-layer self-assembled carbon nanotube-based anode:preparation, characterization, and application in microbial fuel cell[J]. Electrochimical Acta, 2010, 55(9):3041-3047.
[18] SUN M, ZHANG F, TONG Z H, et al. A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1[J]. Biosensors and Bioelectronics, 2010, 26(2):338-343.
[19] FENG Y, YANG Q, WANG X, et al. Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells[J]. Journal of Power Sources, 2010, 195(7):1841-1844.
[20] WANG X, CHENG S, FANGS Y, et al. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells[J]. Environmental Science & Technology, 2009, 43(17):6870-6874.
[21] AVILA A G, HINESTROZA J P. Smart textiles:tough cotton[J]. Nature Biotechnology, 2008, 3(8):458-459.
[22] BAO L H, LI X D. Towards textile energy storage from cotton T-shirts[J]. Advanced Materials, 2012, 24(24):3246-3252.
[23] JUAN Y, QIANG Q K. Preparation of activated carbon by chemical activation under vacuum[J]. Environmental Science & Technology, 2009, 43(9):3385-3390.
[24] BABEL K, JUREWICZ K. KOH activated carbon fabrics as supercapacitor material[J]. Journal of Physics and Chemistry of Solids, 2004, 65(2-3):275-280.
[25] HU L B, PASTA M, MANTIA L F, et al. Stretchable, porous, and conductive energy textiles[J]. Nano Letters, 2010, 10(2):708-714.
[26] ZHANG L X, ZHOU S G, ZHUANG L, et al. Microbial fuel cell based on Klebsiella pneumoniae biofilm[J]. Electrochemistry Communication, 2008, 10(10):1641-1643.
[27] LOGAN B, CHEN S, WATSON V, et al. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells[J]. Environmental Science & Technology, 2007, 41(9):3341-3346.
[28] LING Z, WANG Z, ZHANG M, et al. Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors[J]. Advanced Function Materials, 2016, 26(1):111-119.
[29] BAG S, MONDAL B, DAS A K, et al. Nitrogen and sulfur dual-doped reduced graphene oxide:synergistic effect of dopants towards oxygen reduction reaction[J]. Electrochemical Acta, 2015, 163(2):16-23.
[30] ZHOU C F, LIU Z W, DU X S, et al. Hollow nitrogen-containing core/shell fibrous carbon nanomaterials as support to platinum nanocatalysts and their TEM tomography study[J]. Nanoscale Research Letters, 2012, 7(1):1-11.
[31] SHISHMAKOV A B, ERANKIN S V, MIKUSHINA Y V, et al. Activated carbon and carbon-oxide composite materials derived from powdered cellulose[J]. Russian Journal of Applied Chemistry, 2010, 83(2):307-311.
[32] MARCHESSAULT R H. Application of infrared spectroscopy to cellulose and wood polysaccharides[J]. Pure and Applied Chemistry, 1962, 5(1-2):107-130.
[33] CHEN S L, LIU Q, HE G H, et al. Reticulated carbon foam derived from a sponge-like natural product as a high-performance anode in microbial fuel cells[J]. Journal of Materials Chemistry, 2012, 22(35):18609-18613.
[34] XIE X, HU L B, PASTA M, et al. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells[J]. Nano Letters, 2011, 11(1):291-296.
[35] SAITO T, ROBERTS T H, LONG T E, et al. Neutral hydrophilic cathode catalyst binders for microbial fuel cells[J]. Energy & Environmental Science, 2011, 4(3):928-934.
[36] ZHANG F, PANT D, LOGAN B E. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells[J]. Biosensors and Bioelectronics, 2011, 30(1):49-55.
[37] TANG J H, YUAN Y, LIU T, et al. High-capacity carbon-coated titanium dioxide core-shell nanoparticles modified three dimensional anodes for improved energy output in microbial fuel cells[J]. Journal of Power Sources, 2015, 274:170-176.
[38] YONG YC, DONG XC, CHAN-PARK MB, et al. Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells[J]. ACS Nano, 2012, 6(3):2394-2400.
[39] WEN Z, CI S, MAO S, et al. TiO2 nanoparticles-decorated carbon nanotubes for significantly improved bioelectricity generation in microbial fuel cells[J]. Journal of Power Sources, 2013, 234(21):100-106.
[40] ZENG L Z, ZHANG W G, XIA P, et al. Porous Ni0.1Mn0.9O1.45 microellipsoids as high-performance anode electrocatalyst for microbial fuel cells[J]. Biosensors and Bioelectronics, 2018, 102:351-356.
[41] REGUERA G, POLLINA R B, NICOLL J S, et al. Possible nonconductive role of geobacter sulfurreducens pilus nanowires in biofilm formation[J]. Journal of Bacteriology, 2007, 189(5):2125-2127.
[1] 刘存生, 刘屹东, 廖松义, 黄兴文, 李清玲, 宋道远, 闵永刚. 聚酰亚胺基复合材料在电池电极中的研究进展[J]. 广东工业大学学报, 2022, 39(03): 125-132.
[2] 曾丽珍,李伟善. 碳化钼作为微生物燃料电池阴极催化剂的研究[J]. 广东工业大学学报, 2013, 30(1): 110-114.
[3] 王宁. Nb变质处理铸造高速钢的组织和性能[J]. 广东工业大学学报, 2012, 29(2): 68-71.
[4] 王立杰. 电热水器牺牲阳极失效报警控制器设计[J]. 广东工业大学学报, 2010, 27(1): 64-66.
[5] 王国庆; 傅维勤; 崔英德; . 石灰乳碳化反应的热力学[J]. 广东工业大学学报, 2000, 17(1): 70-72.
[6] 黄慧民; 曾振欧; 曾颖如; 柳松; 余建威; . 醋酸-醋酐体系中 Mn(Ⅱ)在石墨阳极上的氧化[J]. 广东工业大学学报, 1998, 15(1): 19-24.
[7] 聂晓军; 陈庆邦; 刘如意;. 高锑低银铅阳极泥湿法提银及综合回收的研究[J]. 广东工业大学学报, 1996, 13(4): 51-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!