广东工业大学学报 ›› 2019, Vol. 36 ›› Issue (04): 59-64.doi: 10.12052/gdutxb.180139

• 综合研究 • 上一篇    下一篇

基于归一化模型的单相PWM整流器控制策略研究

黄冀成1, 唐雄民1, 吕叶卿1, 刘日升1, 张兴旺2   

  1. 1. 广东工业大学 自动化学院, 广东 广州 510006;
    2. 广州擎天实业有限公司, 广东 广州 510300
  • 收稿日期:2018-10-29 出版日期:2019-06-18 发布日期:2019-05-31
  • 作者简介:黄冀成(1996-),男,硕士研究生,主要研究方向为电力电子与电力拖动.E-mail:872923947@qq.com
  • 基金资助:
    广东省科技计划项目(2015B020238013)

A Research on Control Strategy of Single-phase PWM Rectifier Based on Normalized Model

Huang Ji-cheng1, Tang Xiong-min1, Lyu Ye-qing1, Liu Ri-sheng1, Zhang Xing-wang2   

  1. 1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China;
    2. Guangzhou Kinte Industrial Co., Ltd., Guangzhou 510300, China
  • Received:2018-10-29 Online:2019-06-18 Published:2019-05-31

摘要: 针对经典的单相PWM (Pulse Width Modulation)整流器在旋转坐标系下需要虚构与输入电流和电压相正交的电流和电压分量且控制系统复杂的问题,利用等效变换的方法,构建了单相PWM整流器在静止坐标系下控制策略的归一化模型.归一化模型揭示了静止坐标系下的比例谐振控制策略和旋转坐标系下的经典控制策略的内在联系与区别.为进一步简化控制策略,文中还对归一化模型中的电流内环控制结构进行了改进,并给出控制器参数配置准则.最后,通过仿真和实验验证了本文所提出的归一化模型的正确性和有效性.

关键词: 单相PWM整流器, 归一化模型, 虚拟电流, 参数配置

Abstract: In order to solve the problem that the classical single-phase PWM rectifier needs to fabricate the current and voltage components orthogonal to the input current and voltage in the rotating coordinate system, and that the control system is complex, a normalized control strategy model of single-phase PWM rectifier in the static coordinate system is constructed by using the equivalent transformation method. Based on the normalized model, the internal relations and differences between proportional resonance control strategy in stationary coordinate system and classical control strategy in rotating coordinate system are revealed. In order to simplify the control strategy further, the current inner loop control structure in the normalized model is improved, and the controller parameter allocation criteria are given. Finally, the correctness and validity of the normalized model proposed in this research are verified by simulation and experiment.

Key words: single phase PWM rectifier, normalization model, virtual current, parameter configuration

中图分类号: 

  • TM461
[1] 王兆安, 刘进军. 电力电子技术[M]. 5版. 北京:机械工业出版社, 2009.
[2] 张兴, 张崇巍. PWM整流器及其控制[M]. 北京:机械工业出版社, 2012.
[3] 张淼, 郭兴屹, 张兴旺. 基于状态反馈的单相LCL逆变器研究[J]. 广东工业大学学报, 2018, 35(5):60-64, 69 ZHANG M, GUO X Y, ZHANG X W. Research on single phase LCL inverter based on state feedback abstract[J]. Journal of Guangdong University of Technology, 2018, 35(5):60-64, 69
[4] 刘和平, 邱斌斌, 彭东林, 等. 电流型脉宽调制整流器间接电流控制改进策略[J]. 电网技术, 2012, 36(6):182-187 LIU H P, QIU B B, PENG D L, et al. An improved indirect current control strategy for current source PWM filter[J]. Power System Technology, 2012, 36(6):182-187
[5] 郑俊, 冯晓云, 谢望玉, 等. 单相PWM整流器瞬态电流控制策略的研究[J]. 电力电子技术, 2009, 43(12):2-3 ZHENG J, FENG X Y, XIE W Y, et al. The transient current control for single phase PWM rectifiers[J]. Power Electronics, 2009, 43(12):2-3
[6] 唐雄民, 朱燕飞, 章云. 基于功率预测模型的单相PWM整流器直接功率控制[J]. 控制与决策, 2012, 27(6):845-849 TANG X M, ZHU Y F, ZHANG Y. Model-based predictive direct power control of single-phase pulse width modulation rectifier[J]. Control and Decision, 2012, 27(6):845-849
[7] 曹晓冬, 谭国俊, 王从刚, 等. 一种低开关频率PWM整流器的满意预测控制策略[J]. 中国电机工程学报, 2013(27):69-77 CAO X D, TAN G J, WANG C G, et al. A research on low switching frequency PWM rectifiers with satisfactory and model predictive control[J]. Proceedings of the CSEE, 2013(27):69-77
[8] 杜荣茂, 陈小强, 景利学. PWM整流器两种空间矢量控制策略的比较研究[J]. 电气传动自动化, 2012, 34(3):6-13 DU R M, CHEN X Q, JING L X. Comparison research on two types of space vector control strategy of PWM rectifiers[J]. Electrical Drive Automation, 2012, 34(3):6-13
[9] 张淼, 苏协飞. 基于比例谐振和谐波补偿控制技术的单相逆变并网研究[J]. 广东工业大学学报, 2016, 33(5):59-64 ZHANG M, SUN X F. Research on proportional-resonant controller and harmonic compensation for grid-connected inverter[J]. Journal of Guangdong University of Technology, 2016, 33(5):59-64
[10] 陶兴华, 李永东, 孙敏, 等. 一种基于同步旋转坐标变换的单相锁相环新算法[J]. 电工技术学报, 2012, 27(6):147-152 TAO X H, LI Y D, SUN M, et al. A novel single-phase locked loop algorithm based on synchronous reference frame[J]. Transactions of China Electrotechnical Society, 2012, 27(6):147-152
[11] ZMOOD D N, HOLMES D G, BODE G H. Frequency-domain analysis of three-phase linear current regulators[J]. IEEE Transactions on Industry Applications, 2001, 37(2):601-610
[12] 宋修奎, 唐雄民, 章云, 等. 一种适合于单相电压型逆变电源的并联控制方案研究[J]. 广东工业大学学报, 2015, 32(2):79-85 SONG X K, TANG X M, ZHANG Y, et al. A method of parallel control for single-phase voltage source inverters[J]. Journal of Guangdong University of Technology, 2015, 32(2):79-85
[13] KIM R Y, CHOI S Y, SUH I Y. Instantaneous control of average power for grid tie inverter using single phase D-Q rotating frame with all pass filter[C]//30th Annual Conference of IEEE Industrial Electronics Society. Busan, South Korea:IEEE, 2004:274-279.
[14] FRANCESCHINI G, LORENZANI E, TASSONI C, et al. Synchronous reference frame grid current control for single-phase photovoltaic converters[C]//2008 IEEE Industry Applications Society Annual Meeting. Edmonton, AB:IEEE. 2008:1-7.
[15] SARITHA B, JANKIRAMAN P A. Observer based current control of single-phase inverter in DQ rotating frame[C]//2006 International Conference on Power Electronic. New Delhi:IEEE, 2007:1-5.
[16] ROSHAN A, BURGOS R, BAISDEN A C, et al. A d-q frame controller for a full-bridge single phase inverter used in small distributed power generation systems[C]//APEC 07-Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition. Anaheim, CA, USA:IEEE, 2007:641-647.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!