广东工业大学学报 ›› 2019, Vol. 36 ›› Issue (05): 63-70.doi: 10.12052/gdutxb.180174
张英明1, 王兵毅1, 余坚1, 郝志峰1, 柯勇2, 陈毅龙2
Zhang Ying-ming1, Wang Bing-yi1, Yu Jian1, Hao Zhi-feng1, Ke Yong2, Chen Yi-long2
摘要: 采用热分析法研究了高含量Al2O3填料对环氧树脂(E51)/二氨基二苯甲烷(DDM)体系的固化表观活化能、热降解动力学和性能的影响.非等温差式扫描量热法(DSC)固化动力学研究表明,加入Al2O3体系的反应活化能由51.49 kJ/mol降低至48.12 kJ/mol;用n级非等温动力学法分析获得了固化反应的动力学参数.利用热重分析研究了环氧固化物体系的热降解动力学,用FWO方法计算固化物降解活化能结果表明,Al2O3粉体对E51/DDM体系初始分解活化能影响不大,当降解率达到30%时,Al2O3粉体对E51/DDM体系分解有明显的抑制作用.热重红外联用测试结果表明,甲烷、羰基化合物、胺和双酚A是E51/DDM热分解过程中的主要产物,Al2O3粉体能提高E51/DDM体系的热稳定性.动态热机械研究表明,Al2O3的加入增大了环氧树脂固化产物的储能模量.DSC测试结果表明,Al2O3加入后,体系的玻璃化转变温度由114.16℃提高到121.51℃.
中图分类号:
[1] ZHANG, B L, TA NG, G L, S HI, K Y, et al. A study on the properties of epoxy resin toughened by a liquid crystal-type oligomer[J]. Journal of Applied Polymer Science, 2015, 71(1):177-184 [2] 周正伟, 白瑞成, 任慕苏, 等. 多官能团环氧树脂体系的固化反应[J]. 高分子材料科学与工程, 2011, 27(8):61-64 ZHOU Z W, BAI R C, REN M S, et al. Curing reaction of multifunctional epoxy resin[J]. Polymer Material Science & Engineering, 2011, 27(8):61-64 [3] 杜伯学, 孔晓晓, 李进, 等. 高导热环氧树脂复合电介质研究现状[J]. 绝缘材料, 2017, 50(8):1-8 DU B X, KONG X X, LI J, et al. Research status of epoxy resin composite dielectrics with high thermal conductivity[J]. Insulation Materials, 2017, 50(8):1-8 [4] WANG F, DRAZAL L, QIN Y, et al. Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites[J]. Journal of Materials Science, 2015, 50(3):1082-1093 [5] FERDOSIAN F, YUAN Z, ANDERSON M, et al. Thermal performance and thermal decomposition kinetics of lignin-based epoxy resins[J]. Journal of Analytical and Applied Pyrolysis, 2016, 119(82):124-132 [6] JIAO C, ZHANG C, DONG J, et al. Combustion behavior and thermal pyrolysis kinetics of flame-retardant epoxy composites based on organic-inorganic intumescent flame retardant[J]. Journal of Thermal Analysis and Calorimetry, 2015, 119(3):1759-1767 [7] ARADHANA R, MOHANTY S, NAYAK S. High performance epoxy nanocomposite adhesive:Effect of nanofillers on adhesive strength, curing and degradation kinetics[J]. International Journal of Adhesion and Adhesives, 2018, 84(8):238-249 [8] 郑伟峰, 周来水, 袁铁军, 等. 颗粒Al2O3增强环氧树脂复合材料的微波固化动力学及性能[J]. 高分子材料科学与工程, 2017, 33(10):65-71 ZHENG W F, ZHOU L S, YUAN T J, et al. Effects of modified halloysite nanotubes and ammonium polyphosphate on the flame retardancy and mechanical property for silicone rubber[J]. Polymer Materials Science & Engineering, 2017, 33(10):65-71 [9] 张进, 董红星, 陈野, 等. 羧甲基纤维素钠对环氧树脂固化行为及性能的影响[J]. 高分子材料科学与工程, 2013, 29(3):89-93 ZHANG J, DONG H X, CHEN Y, et al. Effects of carboxymethyl cellulose on the cure behaviors and properties of epoxy[J]. Polymer Materials Science & Engineering, 2013, 29(3):89-93 [10] KISSINGER H. Reaction kinetics in different thermal analysis[J]. Analysis Chemistry, 1957, 29(11):1702-1706 [11] OZAWA T. A modified method for kinetic analysis of thermoanalytical data[J]. Thermal Analysis, 1976, 9(3):369-373 [12] SBIRRAZZUOLI N. Is the friedman method applicable to transformations with temperature dependent reaction heat?[J]. Macromolecular Chemistry & Physics, 2010, 208(14):1592-1597 [13] WU S Q, LIU Y Y. Thermal stability, thermal decomposition and mechanism analysis of cycloaliphatic epoxy/4, 4-dihydroxydiphenylsulfone/aluminum complexes latent resin systems[J]. Journal of Wuhan University of Technology Materials Science, 2012, 27(6):1061-1067 [14] FATEMEH F, YUAN Z, ANDERSON M, et al. Thermal performance and thermal decomposition kinetics of lignin-based epoxy resins[J]. Journal of Analytical & Applied Pyrolysis, 2016, 11(119):124-132 [15] 吉小利, 徐国财, 王君. 纳米氮化硅对环氧树脂固化反应的影响研究[J]. 热固性树脂, 2009, 24(5):17-20 JI X L, XU G C, WANG J. Effect of nano Si3N4 on the cure reaction of epoxy resin[J]. Thermosetting Resin, 2009, 24(5):17-20 |
No related articles found! |
|