广东工业大学学报 ›› 2019, Vol. 36 ›› Issue (05): 71-85.doi: 10.12052/gdutxb.180190

• 综合研究 • 上一篇    下一篇

偶氮苯光致异构储能材料的研究进展

江艳1,2, 黄金1,2, 罗文1   

  1. 1. 广东工业大学 材料与能源学院, 广东 广州 510006;
    2. 肇庆学院 机械与汽车工程学院, 广东 肇庆 526061
  • 收稿日期:2018-12-31 出版日期:2019-08-21 发布日期:2019-09-23
  • 通信作者: 黄金(1975-),男,教授,博士,博士生导师,主要研究方向为新型能源材料与储能技术、太阳能热利用转换技术.E-mail:huangjiner@126.com E-mail:huangjiner@126.com
  • 作者简介:江艳(1991-),女,博士研究生,主要研究方向为储能材料及储能技术.
  • 基金资助:
    国家自然科学基金资助项目(51876044;51803036);中国博士后科学基金资助项目(2018M633014);广东省自然科学基金资助项目(2018A030310515);广州市科技计划产学研协同创新重大专项(201704030009)

Progress of Photoisomerized Energy Storage Materials of Azobenzene

Jiang Yan1,2, Huang Jin1,2, Luo Wen1   

  1. 1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China;
    2. College of Mechanical and Automotive Engineering, Zhaoqing University, Zhaoqing 526061, China
  • Received:2018-12-31 Online:2019-08-21 Published:2019-09-23

摘要: 利用可逆的光异构化捕获、转换、储存和以热的形式释放太阳能的偶氮苯光致异构储能材料成为目前研究的主要焦点之一.近年来,偶氮苯在光储能方面取得了一定的研究成果.介绍偶氮苯光致异构储能材料的储能机理及主要性能指标的基础上,重点介绍了偶氮苯光致异构储能材料半衰期、能量密度和可见光储能的研究现状,分析了各偶氮苯用于储能的优劣势,展望了偶氮苯光致异构储能材料在固态膜中的研究方向和应用前景.

关键词: 偶氮苯, 光异构化, 储能, 回复半衰期, 能量密度

Abstract: Photoisomerized energy storage materials of azobenzene which can capture, convert, store, and release solar energy by reversible photoisomerization have become one of the main focuses of current research. In recent years, certain research results have been achieved using azobenzene for light energy storage. Based on the energy storage mechanism and main performance parameters of photoisomerized energy storage materials of azobenzene, the progress of half life, energy density and visible light energy storage of photoisomerized energy storage materials of azobenzene are focused on, and the merits and drawbacks of those azobenzenes analyzed. Finally, a prediction is made concerning the research direction and application prospect of photoisomerized energy storage materials of azobenzene in solid film.

Key words: azobenzene, photoisomerization, energy storage, half-life, energy density

中图分类号: 

  • TB34
[1] WATANABE M, THOMAS M L, ZHANG S, et al. Application of ionic liquids to energy storage and conversion materials and devices[J]. Chemical Reviews, 2017, 117(10):7190-7239
[2] COOK T R, DOGUTAN D K, REECE S Y, et al. Solar energy supply and storage for the legacy and nonlegacy worlds[J]. Chemical Reviews, 2010, 110(11):6474-6502
[3] CHENG F, WEN R, HUANG Z, et al. Preparation and analysis of lightweight wall material with expanded graphite (EG)/paraffin composites for solar energy storage[J]. Applied Thermal Engineering, 2017, 120:107-114
[4] WANG H, HUANG J, SONG M, et al. Simulation and experimental study on the optical performance of a fixed-focus fresnel lens solar concentrator using polar-axis tracking[J]. Energies, 2018, 11(4):887-1-16
[5] BÖRJESOON K, LENNARTSON A, Moth-Poulsen K. Efficiency limit of molecular solar thermal energy collecting devices[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(6):585-590
[6] EELLABBAN O, ABU-RUB H, BLAABJERG F. Renewable energy resources:Current status, future prospects and their enabling technology[J]. Renewable & Sustainable Energy Reviews, 2014, 39:748-764
[7] MAMANI V, GUTIERREZ A, USHAK S. Development of low-cost inorganic salt hydrate as a thermochemical energy storage material[J]. Solar Energy Materials and Solar Cells, 2018, 176:346-356
[8] Wang F, Fang X, Zhang Z. Preparation of phase change material emulsions with good stability and little supercooling by using a mixed polymeric emulsifier for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2018, 176:381-390
[9] DREOS A, BÖRJESSON K, WANG Z, et al. Exploring the potential of a hybrid device combining solar water heating and molecular solar thermal energy storage[J]. Energy & Environmental Science, 2017, 10(3):728-734
[10] LENNARTSON A, ROFFEY A, MOTH-POULSEN K. Designing photoswitches for molecular solar thermal energy storage[J]. Tetrahedron Letters, 2015, 56(12):1457-1465
[11] CAIA V, CUM G, GALLO R, et al. A high enthalpy value in thermal isomerization of photosynthesized cis-9-styrylacridines[J]. Tetrahedron letters, 1983, 24(36):3903-3904
[12] KANAI Y, SRINIVASAN V, MEIER S K, et al. Mechanism of thermal reversal of the (fulvalene) tetracarbonyldiruthenium photoisomerization:toward molecular solar-thermal energy storage[J]. Angewandte Chemie International Edition, 2010, 49(47):8926-8929
[13] DURGUN E, GROSSMAN J C. Photoswitchable molecular rings for solar-thermal energy storage[J]. Journal of Physical Chemistry Letters, 2013, 4(6):854-860
[14] CHO E N. Understanding and engineering azobenzene for thermal energy storage[D]. Cambridge:Massachusetts Institute of Technology, 2017.
[15] 洪立水, 黄金, 胡艳鑫, 等. 基于太阳能储能材料的偶氮苯化合物性能研究[J]. 太阳能学报, 2017, 38(7):1761-1766 HONG L S, HUANG J, HU Y X, et al. Performance study of azobenzene compounds based on material for solar energy storage[J]. Acta Energiae Solaris Sinica, 2017, 38(7):1761-1766
[16] FENG W, LUO W, FENG Y Y. Photo-responsive carbon nanomaterials functionalized by azobenzene moieties:structures, properties and application[J]. Nanoscale, 2012, 4(20):6118-6134
[17] 李世佩. 双枝偶氮苯-石墨烯杂化材料的合成及光储热性能研究[D]. 天津:天津大学, 2016.
[18] 李嫚. 光储热偶氮苯-石墨烯的分子模型及VASP理论计算[D]. 天津:天津大学, 2015.
[19] 赵肖泽. 双枝偶氮苯/石墨烯杂化材料光热存储的研究[D]. 天津:天津大学, 2016.
[20] 罗文. 偶氮苯-石墨烯杂化材料的合成及其氢键调控分子储能研究[D]. 天津:天津大学, 2015.
[21] 曹晨, 罗文, 冯奕钰, 等. 分子级光储热材料的研究进展[J]. 中国科学:技术科学, 2016, 7:002 CHAO C, LUO W, FENG Y Y, et al. Advanced research in molecular solar thermal storage materials[J]. Scientia Sinica Technologica, 2016, 7:002
[22] KNOLL H. Photoisomerism of azobenzenes[J]. Chem Inform, 2004, 35(17):1-16.
[23] RAU H, LUEDDECKE E. On the rotation-inversion controversy on photoisomerization of azobenzenes. experimental proof of inversion[J]. Journal of the American Chemical Society, 1982, 104(6):1616-1620
[24] 王罗新, 王晓工. 偶氮苯顺反异构化机理研究进展[J]. 化学通报, 2008, 71(4):243-248 WANG L X, WANG X G. Progress of the trans-cis isomerization mechanism of azobenzene[J]. Chemistry Bulletin, 2008, 71(4):243-248
[25] RAU H. In photochromism:molecules and systems[M]. H Duerrand H. ed. Bouas-Laurent. Amsterdam:Elsevier, 2003:165-192.
[26] DUGAVE C, DEMANGE L. Cis-trans isomerization of organic molecules and biomolecules:implications and applications[J]. Chemical Reviews, 2003, 103(7):2475-2532
[27] CHOI B Y, KAHNG S J, KIM S, et al. Conformational molecular switch of the azobenzene molecule:a scanning tunneling microscopy study[J]. Physical Review Letters, 2006, 96(15):156106
[28] KUCHARSKI T J, TIAN Y, AKBULATOV S, et al. Chemical solutions for the closed-cycle storage of solar energy[J]. Energy & Environmental Science, 2011, 4(11):4449-4472
[29] WUA, TALHAM D R. Photoisomerization of azobenzene chromophores in organic/inorganic zirconium phosphonate thin films prepared using a combined langmuir-blodgett and self-assembled monolayer deposition[J]. Langmuir, 2000, 16(19):7449-7456.
[30] YANG Z, CHEN H, CAO L, et al. Nanoscale azo pigment immobilized on carbon nanotubes via liquid phase reprecipitation approach[J]. Materials Letters, 2004, 58(17-18):2238-2242
[31] OOLIVEIRA J O N, DOS SANTOS J D S, BALOGH D T, et al. Optical storage and surface-relief gratings in azobenzene-containing nanostructured films[J]. Advances in Colloid and Interface Science, 2005, 116(1-3):179-192
[32] CACCIARINI M, SKOV A B, JEVRIC M, et al. Towards solar energy storage in the photochromic dihydroazulene-vinylheptafulvene system[J]. Chemistry-A European Journal, 2015, 21(20):7454-7461
[33] KOBAYASHI T, DEGENKOLB E O, RENTZEPIS P M. Picosecond spectroscopy of 1-phenylazo-2 hydroxynaphthalene[J]. The Journal of Physical Chemistry, 1979, 83(19):2431-2434
[34] LEDNEV I K, YE T, HESTER R E, et al. Femtosecond time-resolved UV-visible absorption spectroscopy of trans-azobenzene in solution[J]. The Journal of Physical Chemistry, 1996, 100(32):13338-13341
[35] SADOVSKI O, BEHARRY A A, ZHANG F, et al. Spectral tuning of azobenzene photoswitches for biological applications[J]. Angewandte Chemie International Edition, 2009, 48(8):1484-1486
[36] BASTIANELLI C, CAIA V, CUM G, et al. Thermal isomerization of photochemically synthesized (Z)-9-styrylacridines. An unusually high enthalpy of ZE conversion for stilbene-like compounds[J]. Journal of the Chemical Society, Perkin Transactions 2, 1991(5):679-683
[37] HUANG J, JIANG Y, WANG J, et al. A high energy, reusable and daily-utilization molecular solar thermal conversion and storage material based on azobenzene/multi-walled carbon nanotubes hybrid[J]. Thermochimica Acta, 2017, 657:163-169
[38] BEHARRY A A, SADOVSKI O, WOOLEY G A. Azobenzene photoswitching without ultraviolet light[J]. Journal of the American Chemical Society, 2011, 133(49):19684-19687
[39] SAMANTA S, MC CORMICK T M, SCHMIDT S K, et al. Robust visible light photoswitching with ortho-thiol substituted azobenzenes[J]. Chemical Communications, 2013, 49(87):10314-10316
[40] BLÉGER D, SCHWARZ J, BROUWER A M, et al. o-Fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light[J]. Journal of the American Chemical Society, 2012, 134(51):20597-20600
[41] BLÉGER D, DOKIC J, PRTERS M V, et al. Electronic decoupling approach to quantitative photoswitching in linear multiazobenzene architectures[J]. The Journal of Physical Chemistry B, 2011, 115(33):9930-9940
[42] FENG W, LI S, LI M., et al An energy-dense and thermal-stable bis-azobenzene/hybrid templated assembly for solar thermal fuel[J]. Journal of Materials Chemistry A, 2016, 4(21):8020-8028
[43] HARTLEY G S. The cis-form of azobenzene[J]. Nature, 1937, 140(3537):281
[44] HARTLEY G S. 113. The cis-form of azobenzene and the velocity of the thermal cistrans -conversion of azobenzene and some derivatives[J]. Journal of the Chemical Society, 1938:633-642
[45] CORRUCCINI R J, GILBERT E C. The heat of combustion of cis-and trans-azobenzene[J]. Journal of the American Chemical Society, 1939, 61(10):2925-2927
[46] ADAMSON A W, VOGLER A, KUNKELY H, et al. Photocalorimetry. enthalpies of photolysis of trans-azobenzene, ferrioxalate and cobaltioxalate ions, chromium hexacarbonyl, and dirhenium decarbonyl[J]. Journal of the American Chemical Society, 1978, 100(4):1298-1300
[47] OLMSTED Ⅲ J, LAWRENCE J, YEE G G. Photochemical storage potential of azobenzenes[J]. Solar Energy, 1983, 30(3):271-274
[48] TAODA H, HAYAKAWA K, KAWASE K, et al. Yamakita. Photochemical conversion and storage of solar energy by azobenzene[J]. Journal of Chemical Engineering of Japan, 1987, 20(3):265-270
[49] POZHIDAEVA N, CORMIER M E, CHAUDHARI A, et al. Reversible photocontrol of peptide helix content:adjusting thermal stability of the cis state[J]. Bioconjugate Chemistry, 2004, 15(6):1297-1303
[50] BRODE W R, GOULD J H, WYMAN G M. The relation between the absorption spectra and the chemical constitution of dyes. xxv. phototropism and cis-trans isomerism in aromatic azo compounds[J]. Journal of the American Chemical Society, 1952, 74(18):4641-4646
[51] GABOR G, FISCHER E. Spectra and cis-trans isomerism in highly dipolar derivatives of azobenzene[J]. The Journal of Chemical Physics, 1971, 75(4):581-583
[52] BEHARRY A A, WOOLLEY G A. Azobenzene photoswitches for biomolecules[J]. Chemical Society Reviews, 2011, 40(8):4422-4437
[53] DOKIC J, GOTHE M, WIRTH J, et al. Quantum chemical investigation of thermal cis-to-trans isomerization of azobenzene derivatives:substituent effects, solvent effects, and comparison to experimental data[J]. The Journal of Physical Chemistry A, 2009, 113(24):6763-6773
[54] BANDARA H M D, BURDETTE S C. Photoisomerization in different classes of azobenzene[J]. Chemical Society Reviews, 2012, 41(5):1809-1825
[55] SIEWERTSEN R, NEUMANN H, BUCHHEIM-STEHN B, et al. Highly efficient reversible Z-E photoisomerization of a bridged azobenzene with visible light through resolved S1(nπ*) absorption bands[J]. Journal of the American Chemical Society, 2009, 131(43):15594-15595
[56] JOSHI D K, MITCHELL M J, BRUCE D, et al. Synthesis of cyclic azobenzene analogues[J]. Tetrahedron, 2012, 68(41):8670-8676
[57] HAMMERICH M, SCHÜTT C, STÄHLER C, et al. Heterodiazocines:Synthesis and photochromic properties, trans to cis switching within the bio-optical window[J]. Journal of the American Chemical Society, 2016, 138(40):13111-13114
[58] HAN G G D, LI H, GROSSMAN J C. Optically-controlled long-term storage and release of thermal energy in phase-change materials[J]. Nature Communications, 2017, 8(1):1446
[59] HAN G G D, DERU J H, CHO E N, et al. Optically-regulated thermal energy storage in diverse organic phase-change materials[J]. Chemical Communications, 2018, 54(76):10722-10725
[60] BAHRENBURG J, SIEVERS C M, SCHÖNBORN J B, et al. Photochemical properties of multi-azobenzene compounds[J]. Photochemical & Photobiological Sciences, 2013, 12(3):511-518
[61] NISHIOKA H, LIANG X, KASHIDA H, et al. 2',6'-Dimethylazobenzene as an efficient and thermo-stable photo-regulator for the photoregulation of DNA hybridization[J]. Chemical Communications, 2007(42):4354-4356
[62] NISHIOKA H, LIANG X, ASANUMA H. Effect of the ortho modification of azobenzene on the photoregulatory efficiency of DNA hybridization and the thermal stability of its cis form[J]. Chemistry-A European Journal, 2010, 16(7):2054-2062
[63] HAN M, ISHIKAWA D, HONDA T, et al. Light-driven molecular switches in azobenzene self-assembled monolayers:effect of molecular structure on reversible photoisomerization and stable cis state[J]. Chemical Communications, 2010, 46(20):3598-3600
[64] BLÉGER D, HECHT S. Visible-light-activated molecular switches[J]. Angewandte Chemie International Edition, 2015, 54(39):11338-11349
[65] GARCIA-AMORÓS J, BUČINSKAS A, REIG M, et al. Fastest molecular photochromic switches based on nanosecond isomerizing benzothiazolium azophenolic salts[J]. Journal of Materials Chemistry C, 2014, 2(3):474-480
[66] MOUROT A, KIENZLER M A, BANGHART M R, et al. Tuning photochromic ion channel blockers[J]. ACS Chemical Neuroscience, 2011, 2(9):536-543
[67] HOSONO N, YOSHIKAWA M, FURUKAWA H, et al. Photoinduced deformation of rigid azobenzene-containing polymer networks[J]. Macromolecules, 2013, 46(3):1017-1026
[68] NATANSOHN A, ROCHON P. Photoinduced motions in azo-containing polymers[J]. Chemical Reviews, 2002, 102(11):4139-4176
[69] GOULET-HANSSENS A, CORKERY T C, PRⅡMAGI A, et al. Effect of head group size on the photoswitching applications of azobenzene Disperse Red 1 analogues[J]. Journal of Materials Chemistry C, 2014, 2(36):7505-7512
[70] SAMANTA S, BEHARRY A A, SADOVSKI O, et al. Photoswitching azo compounds in vivo with red light[J]. Journal of the American Chemical Society, 2013, 135(26):9777-9784
[71] RULLO A, REINER A, REITER A, et al. Long wavelength optical control of glutamate receptor ion channels using a tetra-ortho-substituted azobenzene derivative[J]. Chemical Communications, 2014, 50(93):14613-14615
[72] KNIE C, UTECHT M, ZHAO F, et al. Ortho-fluoroazobenzenes:visible light switches with very long-lived Z isomers[J]. Chemistry-A European Journal, 2014, 20(50):16492-16501
[73] YANG Y, HUGHES R P, APRAHAMIAN I. Near-infrared light activated azo-BF2 switches[J]. Journal of the American Chemical Society, 2014, 136(38):13190-13193
[74] YANG Y, SU X., CARROLL C N, et al Aggregation-induced emission in BF2-hydrazone (BODIHY) complexes[J]. Chemical Science, 2012, 3(2):610-613
[75] WANG Y P, ZHANG Z X, XIE M, et al. Theoretical study on thermal cis-to-trans isomerization of BF2-coordinated azo compounds of the para-substitution with electron donating groups[J]. Dyes and Pigments, 2016, 129:100-108
[76] FENG Y Y, LIU H P, LUO W, et al. Covalent functionalization of graphene by azobenzene with molecular hydrogen bonds for long-term solar thermal storage[J]. Scientific Reports, 2013, 3:3260
[77] LUO W, FENG Y Y, CAO C, et al. A high energy density azobenzene/graphene hybrid:a nano-templated platform for solar thermal storage[J]. Journal of Materials Chemistry A, 2015, 3(22):11787-11795
[78] LUO W, FENG Y Y, QIN C Q, et al. High-energy, stable and recycled molecular solar thermal storage materials using azo/graphene hybrids by optimizing hydrogen bonds[J]. Nanoscale, 2015, 7(39):16214-16221
[79] ZHAO X, FENG Y, QIN C Q, et al. Controlling heat release from a close-packed bisazobenzene-reduced-graphene-oxide assembly film for high-energy solid-state photothermal fuels[J]. ChemSusChem, 2017, 10(7):1395-1404
[80] YANG W, FENG Y, SI Q, et al. Efficient cycling utilization of solar-thermal energy for thermochromic displays with controllable heat output[J]. Journal of Materials Chemistry A, 2019, 7(1):97-106
[81] MASUTANI K, MORIKAWA M, KIMIZUKA N. A liquid azobenzene derivative as a solvent-free solar thermal fuel[J]. Chemical Communications, 2014, 50(99):15803-15806
[82] CHO E N, ZHITOMIRSKY D, HAN G G D, et al. Molecularly engineered azobenzene derivatives for high energy density solid-state solar thermal fuels[J]. ACS Applied Materials & Interfaces, 2017, 9(10):8679-8687
[83] HAN G D, PARK S S, LIU Y, et al. Photon energy storage materials with high energy densities based on diacetylene-azobenzene derivatives[J]. Journal of Materials Chemistry A, 2016, 4(41):16157-16165
[84] JEONG S P, RENNA L A, BOYLE C J, et al. High energy density in azobenzene-based materials for photo-thermal batteries via controlled polymer architecture and polymer-solvent interactions[J]. Scientific Reports, 2017, 7(1):17773
[85] ISHIBA K, MORIKAWA M, CHIKARA C, et al. Photoliquefiable ionic crystals:a phase crossover approach for photon energy storage materials with functional multiplicity[J]. Angewandte Chemie International Edition, 2015, 54(5):1532-1536
[86] ZHITOMIRSKY D, CHO E, GROSSMAN J C. Solid-state solar thermal fuels for heat release applications[J]. Advanced Energy Materials, 2016, 6(6):1502006
[87] ZHITOMIRSKY D, GROSSMAN JC. Conformal electroplating of azobenzene-based solar thermal fuels onto large-area and fiber geometries[J]. ACS Applied Materials & Interfaces, 2016, 8(39):26319-26325
[88] WEIS P, WANG D, WU S. Visible-light-responsive azopolymers with inhibited π-π stacking enable fully reversible photopatterning[J]. Macromolecules, 2016, 49(17):6368-6373
[89] SAYDJARI A K, WEIS P, WU S. Spanning the solar spectrum:azopolymer solar thermal fuels for simultaneous UV and visible light storage[J]. Advanced Energy Materials, 2017, 7(3):1601622
[90] KOLPAK A M, GROSSMAN J C. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels[J]. Nano Letters, 2011, 11(8):3156-3162
[91] KOLPAK A M, GROSSMAN J C. Hybrid chromophore/template nanostructures:a customizable platform material for solar energy storage and conversion[J]. Journal of Chemical Physics, 2013, 138(3):034303
[92] KUCHARSKI T J, FERRALIS N, KOLPAK A M, et al. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels[J]. Nature Chemistry, 2014, 6(5):441-447
[93] JIANG Y, HUANG J, FENG W, et al. Molecular regulation of nano-structured solid-state AZO-SWCNTs assembly film for the high-energy and short-term solar thermal storage[J]. Solar Energy Materials and Solar Cells, 2019, 193:198-205
[94] LI M, FENG Y Y, LIU E Z, et al. Azobenzene/graphene hybrid for high-density solar thermal storage by optimizing molecular structure[J]. Science China-Technological Sciences, 2016, 59(9):1383-1390
[1] 于健, 陈泽虹, 彭新文. 生物质基储能材料在柔性器件中的应用[J]. 广东工业大学学报, 2022, 39(01): 41-49.
[2] 邹世轩,李风,张仁元. 碳化硅和氮化硅在熔融铝硅合金中的腐蚀研究[J]. 广东工业大学学报, 2013, 30(1): 106-109.
[3] 钟浩元, 张仁元, 史保新, 李石栋, 刘良德. 热二极管在储能式太阳热水器中的应用研究[J]. 广东工业大学学报, 2010, 27(1): 42-46.
[4] 夏晓舟; 章青; 李丽娟; . 引气量对混凝土摩擦系数影响规律的理论探讨[J]. 广东工业大学学报, 2009, 26(3): 20-23.
[5] 李志生; 张国强; 刘建龙; . 亚热带地区建筑能源效率与节能分析[J]. 广东工业大学学报, 2006, 23(1): 1-7.
[6] 黄金; 张仁元; 李昌明; . 无机盐熔渗多孔陶瓷的熔渗动力学分析[J]. 广东工业大学学报, 2005, 22(2): 1-5.
[7] 刘发兴; . 偶氮苯聚合物中推—拉结构对光学性能的影响[J]. 广东工业大学学报, 2004, 21(1): 50-51.
[8] 李爱菊; 张仁元; 周晓霞; . 化学储能材料开发与应用[J]. 广东工业大学学报, 2002, 19(1): 81-84.
[9] 刘发兴; 李群; 陈小珠; 李慧; 林中强; . 用简并四波混频对偶氮苯聚合物薄膜光致异构过程的研究[J]. 广东工业大学学报, 1998, 15(4): 54-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!