广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (05): 31-37.doi: 10.12052/gdutxb.190143

• 综合研究 • 上一篇    下一篇

基于地面特征的单目视觉机器人室内定位方法

揭云飞, 王峰, 钟有东, 智凯旋, 熊超伟   

  1. 广东工业大学 信息工程学院,广东 广州 510006
  • 收稿日期:2019-11-20 出版日期:2020-09-17 发布日期:2020-09-17
  • 通信作者: 王峰(1961-),男,教授,博士,主要研究方向为卫星导航、机器人和车辆建模及控制、室内定位技术,E-mail:everett.wang@gdut.edu.cn E-mail:everett.wang@gdut.edu.cn
  • 作者简介:揭云飞(1994-),男,硕士研究生,主要研究方向为室内定位技术
  • 基金资助:
    广东省自然科学基金资助项目(2016A030313698);广东省产学研合作项目(2015B090901060,2014B090901070);广东省科技计划(产学研)项目(2016B090918031);广州市科技计划项目(201604046007)

An Indoor Positioning Method of Monocular Vision Robot Based on Floor Features

Jie Yun-fei, Everett Wang, Zhong You-dong, Zhi Kai-xuan, Xiong Chao-wei   

  1. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2019-11-20 Online:2020-09-17 Published:2020-09-17

摘要: 针对高精度的机器人室内定位方法中成本过高的问题,提出一种基于地面特征的单目视觉机器人室内定位方法。该方法通过安装在机器人底盘的单目鱼眼摄像头采集地面图片,并经过一系列图像处理,将得到的地面方格直线和相机的位姿关系作为观测量,通过推导出观测方程并根据扩展卡尔曼滤波算法得到机器人的位置信息。基于机器人当前时刻位置数据和地面的固定方格大小提出线预测算法,有效地排除干扰线段的影响。实验结果表明,该机器人室内定位方法定位精度可以达到2 cm,具有较好的鲁棒性,能够为低成本的机器人室内定位提供较好的技术参考。

关键词: 机器人室内定位, 方格直线, 卡尔曼滤波, 图像处理, 线预测

Abstract: In order to solve the problem of high cost in high-precision robot indoor positioning method, an indoor positioning method based on ground features for monocular vision robot is proposed. This method collects the ground image through the monocular fisheye camera installed on the robot chassis, and after a series of image processing, the relationship between the ground grid straight line and the pose of the camera is used as the observational measurements, then the position information of the robot is obtained by deriving the observation equation and the extended Kalman filter algorithm. Based on the current time position data of the robot and the fixed square size of the ground, a line prediction algorithm is proposed to effectively eliminate the influence of the interference line segment. The experimental results show that the positioning accuracy of the robot indoor positioning method can reach 2 cm, which has good robustness and also can provide a good technical reference for low-cost robot indoor positioning.

Key words: robot indoor positioning, square line, Kalman filtering, image processing, line prediction

中图分类号: 

  • TP242
[1] 宋凯楠, 王彪, 唐超颖. 基于激光测距扫描的室内定位方法研究[J]. 激光与红外, 2016, 46(8): 938-942
SONG K N, WANG B, TANG C Y. Research on indoor localization method based on laser ranging scanning [J]. Laser & Infrared, 2016, 46(8): 938-942
[2] HESS W, KOHLER D, RAPP H, et al. Real time loop closure in 2D LIDAR SLAM[C]//2016 IEEE International Conference on Robotics and Auto- mation (ICRA), Computer Science. Stockholm: IEEE, 2016: 1271-1278.
[3] MICUSIK B, WILDENAUER H. Descriptor free visual indoor localization with line segments[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston. MA: IEEE, 2015: 3165-3173.
[4] 董星亮, 苑晶, 张雪波, 等. 室内环境下基于图像序列拓扑关系的移动机器人全局定位[J]. 机器人, 2019, 41(1): 83-94
DONG X L, YUAN J, ZHANG X B, et al. Mobile robot global localization based on topological relationship between image sequences in indoor environments [J]. ROBOT, 2019, 41(1): 83-94
[5] 常津铭, 王红蕾. 室内定位系统中位置指纹库滤波算法研究[J]. 现代电子技术, 2019, 42(17): 10-13
CHANG J M, WANG H L. Research on location fingerprint database filtering algorithm in indoor location system [J]. Modern Electronic Technique, 2019, 42(17): 10-13
[6] 杨保, 张鹏飞, 李军杰, 等. 一种基于蓝牙的室内定位导航技术[J]. 测绘科学, 2019, 44(6): 89-95
YANG B, ZHANG P F, LI J J, et al. An indoor positioning and navigation technology based on bluetooth [J]. Science of Surveying and Mapping, 2019, 44(6): 89-95
[7] SŁAWOMIR R, AMBROZIAK L, ZDZISŁAW G, et al. Real time localization system with extended Kalman filter for indoor applications[C]//2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), Robotics. Miedzyzdroje: IEEE, 2016: 42-47.
[8] 郑亮, 陶乾. 鱼眼镜头自标定和畸变校正的实现[J]. 计算机工程, 2016, 42(9): 252-256
ZHENG L, TAO Q. Implementation of self-calibration and distortion correction [J]. Computer Engineering, 2016, 42(9): 252-256
[9] XIAO F, WU Z, HUANG Z D, et al. Indoor robot visual positioning system based on floor features[C]//2018 3rd International Conference on Robotics and Automation Engineering (ICRAE), Mobile Robots and Autonomous Systems. Guangzhou: IEEE, 2018: 97-101.
[10] MARTIN A, FISCHLER, BOLLES, et al. Random sample consensus: a paradigm for model fitting with applications to image analysis and automat cartography [J]. Communications of the ACM, 1981, 24: 381-395
[11] PETKOVIĆ T, LONČARIĆ S. Using gradient orientation to improve least squares line fitting[C]//2014 Canadian Conference on Computer and Robot Vision (CRV), Real-time Sensing and Control. Montreal: IEEE, 2014: 226-231.
[12] 张艳莉. 基于最小二乘法拟合直线的研究[J]. 信息通信, 2014(11): 44-45
ZHANG Y L. Research on fitting lines based on least squares method [J]. Information & Communications, 2014(11): 44-45
[13] VENTOSA S, SIMON C, SCHIMMEL M, et al. The S-Transform from a wavelet point of view [J]. IEEE Transactions on Signal Processing, 2008, 56(7): 2771-2780
[14] 马凌, 蒋外文, 张肖霞. 基于改进扩展卡尔曼滤波的单站无源定位算法[J]. 计算机工程与应用, 2016, 52(10): 124-127
MA L, JIANG W W, ZHANG X X. Single Passive location algorithm based on improved extended Kalman filter [J]. Computer Engineering and Applications, 2016, 52(10): 124-127
[15] 马晓东, 曾碧, 叶林锋. 基于BA的改进视觉/惯性融合定位算法[J]. 广东工业大学学报, 2017, 34(6): 32-36
MA X D, ZENG B, YE L F. An improved visual Odometry/SINS integrated localization algorithm based on BA [J]. Journal of Guangdong University of Technology, 2017, 34(6): 32-36
[16] 郭佩珍, 胡刚, 傅惠. 基于随机时间的车辆导航路径规划研究[J]. 广东工业大学学报, 2012, 29(1): 35-38
GUO P Z, HU G, FU H. Research on path planning with random time for vehicle navigation [J]. Journal of Guangdong University of Technology, 2012, 29(1): 35-38
[1] 邹恒, 高军礼, 张树文, 宋海涛. 围棋机器人落子指引装置的设计与实现[J]. 广东工业大学学报, 2023, 40(01): 77-82,91.
[2] 刘信宏, 苏成悦, 陈静, 徐胜, 罗文骏, 李艺洪, 刘拔. 高分辨率桥梁裂缝图像实时检测[J]. 广东工业大学学报, 2022, 39(06): 73-79.
[3] 丘展春, 费伦科, 滕少华, 张巍. 余弦相似度保持的掌纹识别算法[J]. 广东工业大学学报, 2022, 39(03): 55-62.
[4] 钟映春, 吕帅, 罗鹏, 简裕涛, 褚千琨. 烤瓷牙内部缺陷的图像检测及其特征统计分析[J]. 广东工业大学学报, 2018, 35(01): 1-5.
[5] 张军龙, 刘立程, 胡瑞. 时变信道下OFDM系统载波频偏估计算法研究[J]. 广东工业大学学报, 2014, 31(1): 59-64.
[6] 邹庆胜, 汪仁煌, 明俊峰. 基于机器视觉的瓷砖多参数分类系统的设计[J]. 广东工业大学学报, 2010, 27(4): 46-49.
[7] 张文峰; 胡振涛; 程建兴; . 种车辆机动目标跟踪的多传感器信息融合估计算法[J]. 广东工业大学学报, 2009, 26(1): 16-.
[8] 袁西霞; 岳建华; 赵贤任; . MATLAB在中值滤波改进算法中的应用[J]. 广东工业大学学报, 2007, 24(1): 33-35.
[9] 薛岚燕; 郑胜林; 潘保昌; 陈箫枫; . 基于神经网络的灰度图像阈值分割方法[J]. 广东工业大学学报, 2005, 22(4): 67-72.
[10] 董奋强; 余煜棉; 刘春英; 张俊浩; . 卡尔曼滤波法在二甲苯异构体色谱分析中的应用[J]. 广东工业大学学报, 2004, 21(2): 25-27.
[11] 张音波; 余煜棉; 刘春英; 万俊杰; 方岩雄; . 卡尔曼滤波分光光度法用于三组分的同时测定[J]. 广东工业大学学报, 2002, 19(3): 74-79.
[12] 苏成悦; 郑光昭; . 利用光折变晶体实现多灰度级图像的区域分割[J]. 广东工业大学学报, 2000, 17(4): 89-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!