广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (06): 73-79.doi: 10.12052/gdutxb.210038
刘信宏, 苏成悦, 陈静, 徐胜, 罗文骏, 李艺洪, 刘拔
Liu Xin-hong, Su Cheng-yue, Chen Jing, Xu Sheng, Luo Wen-jun, Li Yi-hong, Liu Ba
摘要: 针对现有桥梁裂缝检测算法实时性弱、可靠性差等问题,提出一种嵌入式平台上的实时检测算法。使用移动平均法粗分割,依据几何特征和区域生长法再分割,定位候选裂缝片段;基于裂缝先验条件,建立双判别准则的裂缝聚合模型,递归合并裂缝片段并抑制干扰。实验表明,算法能有效提取细小裂缝,抑制不均匀光照和污渍等复杂背景干扰,识别性能与数种现有算法相比提高115%以上;在嵌入式开发板上处理
中图分类号:
[1] 张国旗. 基于图像处理的混凝土桥梁底面裂缝检测方法的研究[D]. 北京: 北京交通大学, 2010. [2] 王德方, 曾卫明, 王倪传. 基于改进K-means算法的不均匀光照下道路裂缝检测[J]. 计算机应用与软件, 2015, 32(7): 244-247. WANG D F, ZENG W M, WANG N C. Road crack detection under uneven illumination using improved k-means algorithm [J]. Computer Application and Software, 2015, 32(7): 244-247. [3] 张德津, 李清泉, 陈颖, 等. 基于空间聚集特征的沥青路面裂缝检测方法[J]. 自动化学报, 2016, 42(3): 443-454. ZHANG D J, LI Q Q, CHEN Y, et al. Asphalt pavement crack detection based on spatial clustering feature [J]. Acta Automatic Sinica, 2016, 42(3): 443-454. [4] 王耀东, 朱力强, 史红梅, 等. 基于局部图像纹理计算的隧道裂缝视觉检测技术[J]. 铁道学报, 2018, 40(2): 82-90. WANG Y D, ZHU L Q, SHI H M, et al. Vision detection of tunnel cracks based on local image texture calculation [J]. Journal of the China Railway Society, 2018, 40(2): 82-90. [5] PRASANNA P, DANA K J, GUCUNSKI N, et al. Automated crack detection on concrete bridges [J]. IEEE Transactions on Automation Science and Engineering, 2016, 13(2): 591-599. [6] ZOU Q, CAO Y, LI Q, et al. CrackTree: automatic crack detection from pavement images [J]. Pattern Recognition Letters, 2012, 33(3): 227-238. [7] 贺福强, 平安, 罗红, 等. 局部特征聚类联合区域增长的桥梁裂缝检测[J]. 科学技术与工程, 2019, 19(34): 272-277. HE F Q, PING A, LUO H, et al. Bridge crack detection based on local feature clustering combined with regional growth [J]. Science Technology and Engineering, 2019, 19(34): 272-277. [8] 周飘, 李强, 曾曙光, 等. 基于多尺度Hessian矩阵滤波的陶瓷瓦表面裂纹检测方法[J]. 激光与光电子学进展, 2020, 57(10): 222-228. ZHOU P, LI Q, ZENG S G, et al. Surface crack detection method for ceramic tile based on hessian matrix multi-scale filtering [J]. Laser & Optoelectronics Progress, 2020, 57(10): 222-228. [9] CHEN H, ZHAO H, HAN D, et al. Accurate and robust crack detection using steerable evidence filtering in electroluminescence images of solar cells [J]. Optics and Lasers in Engineering, 2019, 118: 22-33. [10] TIAN Q, LUO Q, GE B, et al. A methodology framework for retrieval of concrete surface crack's image properties based on hybrid model [J]. Optik, 2019, 180: 199-214. [11] LIU Z, CAO Y, WANG Y, et al. Computer vision-based concrete crack detection using U-net fully convolutional networks [J]. Automation in Construction, 2019, 104: 129-139. [12] CHEN F C, JAHANSHAHI M R. NB-FCN: real-time accurate crack detection in inspection videos using deep fully convolutional network and parametric data fusion [J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69(8): 5325-5334. [13] ZHANG L, YANG F, ZHANG Y D, et al. Road crack detection using deep convolutional neural network[C]//2016 IEEE international conference on image processing (ICIP) . Phoenix: IEEE, 2016: 3708-3712. [14] CHAIYASARN K, SHARMA M, ALI L, et al. Crack detection in historical structures based on Convolutional Neural Network [J]. International Journal of GEOMATE, 2018, 15(51): 240-251. [15] KIM B, YUVARAJ N, PREETHAA K R S, et al. Surface crack detection using deep learning with shallow CNN architecture for enhanced computation [J]. Neural Computing and Applications, 2021, 33(15): 9289-9305. [16] SHI W, ZOU R, WANG F, et al. A new image segmentation method based on multifractal detrended moving average analysis [J]. Physica A:Statistical Mechanics and its Applications, 2015, 432: 197-205. [17] 赵玲玲, 汪烨, 刘俊. 基于无人机与HSV空间的光伏电池板检测分析[J]. 红外技术, 2020, 42(10): 978-982. ZHAO L L, WANG Y, LIU J. Detection and analysis of photovoltaic panels based on UAV and HSV space [J]. Infrared Technology, 2020, 42(10): 978-982. [18] 揭云飞, 王峰, 钟有东, 等. 基于地面特征的单目视觉机器人室内定位方法[J]. 广东工业大学学报, 2020, 37(5): 31-37. JIE Y F, EVERETT W, ZHONG Y D, et al. An indoor positioning method of monocular vision robot based on floor features [J]. Journal of Guangdong University of Technology, 2020, 37(5): 31-37. [19] 姒绍辉, 胡伏原, 顾亚军, 等. 一种基于不规则区域的高斯滤波去噪算法[J]. 计算机科学, 2014, 41(11): 313-316. SI S H, HU F Y, Gu Y J, et al. Improved denoising algorithm based on non-regular area gaussian filtering [J]. Computer Science, 2014, 41(11): 313-316. [20] SKLANSKY J. Finding the convex hull of a simple polygon [J]. Pattern Recognition Letters, 1982, 1(2): 79-83. [21] TOUSSAINT G. Solving geometric problems with the rotating calipers[C]//Proceedings of the IEEE Melecon. Athens: IEEE, 1983. |
[1] | 邹恒, 高军礼, 张树文, 宋海涛. 围棋机器人落子指引装置的设计与实现[J]. 广东工业大学学报, 2023, 40(01): 77-82,91. |
[2] | 丘展春, 费伦科, 滕少华, 张巍. 余弦相似度保持的掌纹识别算法[J]. 广东工业大学学报, 2022, 39(03): 55-62. |
[3] | 杨运龙, 梁路, 滕少华. 一种双路网络语义分割模型[J]. 广东工业大学学报, 2022, 39(01): 63-70. |
[4] | 揭云飞, 王峰, 钟有东, 智凯旋, 熊超伟. 基于地面特征的单目视觉机器人室内定位方法[J]. 广东工业大学学报, 2020, 37(05): 31-37. |
[5] | 钟映春, 吕帅, 罗鹏, 简裕涛, 褚千琨. 烤瓷牙内部缺陷的图像检测及其特征统计分析[J]. 广东工业大学学报, 2018, 35(01): 1-5. |
[6] | 邹庆胜, 汪仁煌, 明俊峰. 基于机器视觉的瓷砖多参数分类系统的设计[J]. 广东工业大学学报, 2010, 27(4): 46-49. |
[7] | 袁西霞; 岳建华; 赵贤任; . MATLAB在中值滤波改进算法中的应用[J]. 广东工业大学学报, 2007, 24(1): 33-35. |
[8] | 薛岚燕; 郑胜林; 潘保昌; 陈箫枫; . 基于神经网络的灰度图像阈值分割方法[J]. 广东工业大学学报, 2005, 22(4): 67-72. |
[9] | 苏成悦; 郑光昭; . 利用光折变晶体实现多灰度级图像的区域分割[J]. 广东工业大学学报, 2000, 17(4): 89-92. |
|