广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (05): 1-6.doi: 10.12052/gdutxb.200053

• 可拓学与创新方法 •    下一篇

系统故障演化过程的可拓学原理

崔铁军1,2, 李莎莎3   

  1. 1. 辽宁工程技术大学 安全科学与工程学院,辽宁 阜新 123000;
    2. 大连交通大学 辽宁省隧道与地下结构工程技术研究中心,辽宁 大连 116028;
    3. 辽宁工程技术大学 工商管理学院,辽宁 葫芦岛 125105
  • 收稿日期:2020-03-19 出版日期:2020-09-17 发布日期:2020-09-17
  • 作者简介:崔铁军(1983-),男,副教授,博士,研究方向为系统可靠性及其智能方法,E-mail:ctj.159@163.com
  • 基金资助:
    国家自然科学基金资助项目(51704141);国家重点研发计划项目 (2017YFC1503102);国家自然科学基金委主任基金资助项目 (61350003)

An Extension Theory of System Fault Evolution Process

Cui Tie-jun1,2, Li Sha-sha3   

  1. 1. College of Safety Science and Engineering, Liaoning Technical University, Fuxin 123000, China;
    2. Tunnel & Underground Structure Engineering Center of Liaoning, Dalian Jiaotong University, Dalian 116028, China;
    3. School of Business Administration, Liaoning Technical University, Huludao 125105, China
  • Received:2020-03-19 Online:2020-09-17 Published:2020-09-17

摘要: 为研究系统故障演化过程(System Fault Evolution Process,SFEP)的表示、分析和处理,利用智能理论并满足对系统功能状态的分析要求,提出基于可拓学原理研究SFEP。首先论述了系统功能状态与可拓学结合的可能性。其次研究了SFEP的可拓表示,确定了SFEP的基本单元,即原因事件—传递条件—结果事件。认为事件可表示为物元和事元的复合事元;传递可表示为关系元和这2个复合事元的复合关系元,称为传递元。最后研究了传递元的发散性、相关性、蕴含性和可扩性,并说明了方法对SFEP分析的作用。论文是通过可拓学研究SFEP的开始,为系统功能状态分析提供智能分析方法和理论基础。

关键词: 安全科学, 智能科学, 可拓理论, 安全系统工程, 系统故障演化过程, 基元, 传递元, 拓展分析原理

Abstract: To study the representation, analysis and processing of system fault evolution process (SFEP), the extension theory is proposed, using intelligent theory and meeting the analysis requirements of system function state. Firstly, the possibility of the combination of system function state and extension theory is discussed. Secondly, the extension representation of SFEP is studied, and the basic unit of SFEP is determined, which is cause event-transfer condition-result event. It is considered that the event is a compound action element of the action element and matter element, and the transfer is a compound relation element of the relation element and the above two compound action elements, which is called the transfer element. Finally, the divergence, correlation, implication and expansibility of the transfer element are studied, and the effect of the method on the analysis of SFEP is explained. The research is the beginning of studying SFEP through extension theory, which provides intelligent analysis method and basic theory for grasping system reliability and failure, i.e. system function state.

Key words: safety science, intelligent science, extension theory, safety system engineering, system fault evolution process, basic element, transfer element, extension analysis principle

中图分类号: 

  • X913.4
[1] 崔铁军, 李莎莎, 朱宝岩. 含有单向环的多向环网络结构及其故障概率计算[J]. 中国安全科学学报, 2018, 28(7): 19-24
CUI T J, LI S S, ZHU B Y. Multidirectional ring network structure with one-way ring and its fault probability calculation [J]. China Safety Science Journal, 2018, 28(7): 19-24
[2] CUI T J, LI S S. Research on complex structures in space fault network for fault data mining in system fault evolution process [J]. IEEE Access, 2019, 7(1): 121881-121896
[3] 王洁, 康俊杰, 周宽久. 基于FPGA的故障修复演化技术研究[J]. 计算机工程与科学, 2018, 40(12): 2120-2125
WANG J, KANG J J, ZHOU K J. Fault recovery evolution technique based on FPGA [J]. Computer Engineering & Science, 2018, 40(12): 2120-2125
[4] 石聪聪, 刘富春. 模糊离散事件系统基于模式的故障诊断[J]. 广东工业大学学报, 2019, 36(1): 35-41
SHI C C, LIU F C. A pattern-based failure diagnosis of fuzzy discrete-event systems [J]. Journal of Guangdong University of Technology, 2019, 36(1): 35-41
[5] 叶彬彬, 刘富春. 随机离散事件系统的故障预测[J]. 广东工业大学学报, 2018, 35(6): 83-89
YE B B, LIU F C. Failure predictability of stochastic discrete event systems [J]. Journal of Guangdong University of Technology, 2018, 35(6): 83-89
[6] 常竞, 温翔. 大数据统计趋势分析和PCA的滚动轴承早期故障诊断[J/OL].机械科学与技术, 2019, 38(5): 721-729[2019-08-19]. https://doi.org/10.13433/j.cnki.1003-8728.20180208.
CHANG J, WEN X. Big data-driven statistic trend analysis and PCA for incipient fault diagnosis of rolling bearings[J/OL]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(5): 721-729[2019-08-19]. https://doi.org/10.13433/j.cnki.1003-8728.20180208.
[7] 李文博, 朱元振, 刘玉田. 交直流混联系统连锁故障搜索模型及故障关联分析[J]. 电力系统自动化, 2018, 42(22): 59-72
LI W B, ZHU Y Z, LIU Y T. Search model and correlation analysis for cascading failures in AC/DC hybrid power system [J]. Automation of Electric Power Systems, 2018, 42(22): 59-72
[8] DAVID V, ONDREJ P, JAN K. System failure estimation based on field data and semi-parametric modeling [J]. Engineering Failure Analysis, 2019, 101: 473-484
[9] SARAH D, MATTHEW H. Development of a hierarchical approach to analyse interdependent infrastructure system failures[J/OL]. Reliability Engineering and System Safety, 2019, 191[2020-01-10]. https://doi.org/10.1016/j.ress.2019.106530.
[10] KHOLOPOV V A, KASHIRSKAYA E N, SHMELEVA A G, et al. An intelligent monitoring system for execution of machine engineering processes [J]. Journal of Machinery Manufacture and Reliability, 2019, 48(5): 464-475
[11] 钟群鹏, 张峥, 傅国如, 等. 失效学的哲学理念及其应用探讨[J]. 机械工程学报, 2011, 47(2): 25-30
ZHONG Q P, ZHANG Z, FU G R, et al. The philosophy and application of failure study [J]. Journal of Mechanical Engineering, 2011, 47(2): 25-30
[12] 钟义信, 张瑞. 信息生态学与语义信息论[J]. 图书情报知识, 2017(6): 4-11
ZHONG Y X, ZHANG R. Information ecology and semantic information theory [J]. Documentation, Information & Knowledge, 2017(6): 4-11
[13] 钟义信. 从“机械还原方法论”到“信息生态方法论”——人工智能理论源头创新的成功路[J]. 哲学分析, 2017, 8(5): 133-144
ZHONG Y X. From mechanical reductionism to methodology of information ecology: Successful approach to innovation for AI theory [J]. Philosophical Analysis, 2017, 8(5): 133-144
[14] 钟义信. 从信息科学视角看《信息哲学》[J]. 哲学分析, 2015, 6(1): 17-31
ZHONG Y X. Information science and its view on Information Philosophy [J]. Philosophical Analysis, 2015, 6(1): 17-31
[15] 钟义信. 高等智能·机制主义·信息转换[J]. 北京邮电大学学报, 2010, 33(1): 1-6
ZHONG Y X. Advanced intelligence-mechanjsm approach-infomation conversion [J]. Journal of Beijing University of Posts and Telecommunications, 2010, 33(1): 1-6
[16] NANCY G L. Engineering a safer world: Systems thinking applied to safety[M]. Cambridge, Massachusetts: MIT Press, 2011.
[17] 唐涛, 牛儒. 基于系统思维构筑安全系统[M]. 北京:国防工业出版社,2015.
[18] 杨春燕, 蔡文. 可拓工程[M]. 北京:科学出版社,2007.
[19] 聂银燕, 林晓焕. 基于SDG的压缩机故障诊断方法研究[J]. 微电子学与计算机, 2013, 30(3): 140-142
NIE Y Y, LIN X H. Research on the fault diagnosis of compressor based on the SDG method [J]. Microelectonics & Computer, 2013, 30(3): 140-142
[20] 崔铁军.系统故障演化过程描述方法研究[J/OL].计算机应用研究, 2019, 37(10)[2019-10-26]. https://doi.org/10.19734/j.issn.1001-3695.2019.05.0194.
CUI T J. Research on description method of system fault evolution process[J/OL]. Application Research of Computers, 2019, 37(10)[2019-10-26]. https://doi.org/10.19734/j.issn.1001-3695.2019.05.0194.
[1] 陈锦成, 成思源, 杨雪荣. 基于功能需求与可拓理论的专利群规避设计[J]. 广东工业大学学报, 2023, 40(02): 5-14,29.
[2] 陈美蓉, 江帆, 黄浩翔, 黄海涛, 黄玉琴. 物场-可拓创新方法研究及应用[J]. 广东工业大学学报, 2022, 39(02): 19-25,90.
[3] 付晓莉, 仝小冬, 尚会超, 丁同锐, 崔汝晨. 情感化造型基元的拟合模型[J]. 广东工业大学学报, 2022, 39(02): 48-54.
[4] 李莎莎, 崔铁军. 综合操作者与管理者行为博弈的系统收益分析方法研究[J]. 广东工业大学学报, 2021, 38(04): 35-40.
[5] 李莎莎, 崔铁军. 基于SFN故障模式的最终事件故障概率分布确定方法[J]. 广东工业大学学报, 2020, 37(06): 9-16.
[6] 李娜, 刘巍, 高红. 基于可拓突变级数法的经济增长综合评价研究[J]. 广东工业大学学报, 2019, 36(03): 8-15.
[7] 李兴森, 许立波, 刘海涛. 面向问题智能处理的基元-因素空间模型研究[J]. 广东工业大学学报, 2019, 36(01): 1-9.
[8] 张文林, 成思源, 杨雪荣. 基于基元理论的改进功能分析方法研究[J]. 广东工业大学学报, 2019, 36(01): 10-15.
[9] 杜宇上, 刘银萍. 基于可拓学的特征变式方法[J]. 广东工业大学学报, 2017, 34(06): 9-14.
[10] 徐慧, 陈宏伟, 宗欣露. 基于可拓论的SDN管理信息语义不匹配问题研究[J]. 广东工业大学学报, 2017, 34(04): 17-21.
[11] 郭建维, 姜文钊, 傅淑琴, 李雄. 共价有机框架材料制备与应用的研究进展[J]. 广东工业大学学报, 2016, 33(01): 1-11.
[12] 余志伟, 李兴森. 基元库构建模型及其应用研究[J]. 广东工业大学学报, 2015, 32(3): 5-9.
[13] 李桥兴, 强保华, 杨春燕. 大数据基元的HBase数据库存储模型与实现[J]. 广东工业大学学报, 2014, 31(3): 8-13.
[14] 王景丽, 李兴森. 统一内容标签的基元表达及其构建策略初探[J]. 广东工业大学学报, 2014, 31(2): 14-20.
[15] 杨春燕, 李志明. 基于可拓学的社会网络结构研究[J]. 广东工业大学学报, 2014, 31(1): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!