广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (03): 62-64.doi: 10.12052/gdutxb.200092

• • 上一篇    下一篇

加权复合算子从Bloch型空间到圆盘代数的拓扑结构

许丽葵, 邓秀勤, 刘军明   

  1. 广东工业大学 应用数学学院,广东 广州 510520
  • 收稿日期:2020-07-22 出版日期:2021-05-10 发布日期:2021-03-12
  • 通信作者: 刘军明 (1985-),男,讲师,主要研究方向为函数空间,E-mail:jmliu@gdut.edu.cn E-mail:jmliu@gdut.edu.cn
  • 作者简介:许丽葵 (1994-),女,硕士研究生,主要研究方向为函数空间
  • 基金资助:
    国家自然科学基金资助项目(11801094)

The Topological Structure of Weighted Composition Operators from Bloch Type Spaces to the Disk Algebra

Xu Li-kui, Deng Xiu-qin, Liu Jun-ming   

  1. School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2020-07-22 Online:2021-05-10 Published:2021-03-12

摘要: 设$ A$为圆盘代数, $ u$和$ \varphi $是$ A$上的解析函数, 刻画了加权复合算子$ u{C_\varphi }$从Bloch型空间到圆盘代数的一些范数估计。同时还研究了加权复合算子空间的道路连通性, 得知任意2个有界加权复合算子是道路连通的。

关键词: 拓扑结构, 加权复合算子, Bloch型空间, 圆盘代数, 道路连通性

Abstract: Let $ A$ be the disk algebra, $ u$ and $ \varphi $ be analytic functins on A, some estimates of weighted composition operators $ u{C_\varphi }$ from Bloch type spaces to the disk algebra are characterized. At the same time, the path connectedness of the space of weighted composition operators is investigated and a conclusion is derived that any two bounded weighted composition operators are pathwise connected.

Key words: topological structure, weighted composition operators, Bloch type spaces, disk algebra, path connectedness

中图分类号: 

  • O174.5
[1] ZHU K. Bloch type spaces of analytic functions [J]. The Rocky Mountain Journal of Mathematics, 1993, 23(3): 1143-1177.
[2] ZHU K. Operator theory in function spaces[M]. 2nd ed. Providence: Mathematical Surveys and Monographs, 2007.
[3] CONTRERAS M D, HERNÁNDEZ-DÍAZ A G. Weighted composition operators on Hardy spaces [J]. Journal of Mathematical Analysis and Applications, 2001, 263(1): 224-233.
[4] ČUČKOVIÓ Z, ZHAO R. Weighted composition operators on the Bergman space [J]. Journal of the London Mathematical Society, 2004, 70(2): 499-511.
[5] IZUCHI K, OHNO S. Topological structure of the space of weighted composition operators between different Hardy spaces [J]. Integral Equations Operator Theory, 2014, 80(2): 153-164.
[6] HOSOKAWA T, IZUCHI K, ZHENG D. Isolated points and essential components of composition operators on H [J]. Proceeding of the American Mathematical Society, 2002, 130(6): 1765-1773.
[7] FANG Z, ZHOU Z. The topological structure of weighted composition operators from Lipschitz spaces to H [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42(3): 897-908.
[8] 张学军. C n中单位球上几个全纯函数空间上加权复合算子的有界性[J]. 数学研究, 2003, 36(3): 243-250.
ZHANG X J. Boundedness of weighted composition operators on -Bloch spaces on the unit ball of C n [J]. Journal of Mathematical Study, 2003, 36(3): 243-250.
[9] MANHAS J, ZHAO R. New estimates of essential norms of weighted composition operators between Bloch type spaces [J]. Journal of Mathematical Analysis and Applications, 2012, 389(1): 32-47.
[1] 张淼, 庞卓标, 郝雪冬, 谢斯炜, 张兴旺. 一种无变压器型并联混合有源电力滤波器研究[J]. 广东工业大学学报, 2019, 36(05): 33-37.
[2] 胡廷鹤,孟安波. 基于虚拟极值粒子群的电网无功优化研究[J]. 广东工业大学学报, 2012, 29(4): 49-53.
[3] 谷小青; 易当祥; 刘春和; . 遗传算法优化神经网络的拓扑结构与权值[J]. 广东工业大学学报, 2006, 23(4): 64-69.
[4] 刘勇健; 刘义建; . 人工神经网络用于岩体工程的方法改进[J]. 广东工业大学学报, 2002, 19(1): 21-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!