广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (03): 72-78.doi: 10.12052/gdutxb.200095

• • 上一篇    下一篇

基于Voronoi图和改进引力搜索算法的电动汽车充电站选址定容

赵炳耀1, 陈璟华1, 郭经韬2, 陈友鹏1, 张兆轩1   

  1. 1. 广东工业大学 自动化学院,广东 广州 510006;
    2. 中国能源建设集团 广东省电力设计研究院有限公司,广东 广州 510663
  • 收稿日期:2020-07-30 出版日期:2021-05-10 发布日期:2021-03-12
  • 通信作者: 陈璟华(1974-),女,副教授,博士,主要研究方向为电力系统安全运行及人工智能技术在电力系统中的应用,E-mail:43884010@qq.com E-mail:43884010@qq.com
  • 作者简介:赵炳耀(1995-),男,硕士研究生,主要研究方向为电力系统优化规划、电动汽车充电站选址定容、智能算法
  • 基金资助:
    中央财政支持地方高校发展专项资金资助项目([2016]202号)

Location and Capacity of Electric Vehicle Charging Station Based on Voronoi Diagram and Improved Gravity Search Algorithm

Zhao Bing-yao1, Chen Jing-hua1, Guo Jing-tao2, Chen You-peng1, Zhang Zhao-xuan1   

  1. 1. School of Automation, Guangdong University of Technology, Guangzhou, 510006, China;
    2. Guangdong Electric Power Design Institute Co., Ltd., China Energy Engineering Group, Guangzhou 510663, China
  • Received:2020-07-30 Online:2021-05-10 Published:2021-03-12

摘要: 电动汽车充电站的选址定容属于多变量、多约束及高维度的非线性数学问题, 针对该问题提出一种基于Voronoi图和改进引力搜索算法(Improved Gravity Search Algorithm, IGSA)的选址定容方法。综合考虑主观权值和客观权值, 运用层次分析熵权法, 建立以建设运行成本、用户充电时间成本及配网损耗成本为目标的电动汽车充电站选址定容多目标决策模型。针对标准引力搜索算法(Gravity Search Algorithm, GSA)收敛速度慢、求解高维度问题精度不足等问题, 在粒子初始化和更新阶段引入混沌映射, 增加算法遍历性; 同时, 引入全局最优点引导速度更新公式, 提高算法跳出局部最优的能力。利用Voronoi图划分充电站服务区域, 提出Voronoi图与IGSA联合求解流程。仿真结果证明了所建模型和算法的可行性和实用性。

关键词: 电动汽车, 充电站, 选址定容, Voronoi图, 改进引力搜索算法

Abstract: Considering the characteristics of location and capacity problems such as multi-variable, multi-constrained, high-dimensional and nonlinear, a method based on Voronoi diagram and improved gravitational search algorithm (IGSA) is proposed. Considering both subjective and objective weights, a multi-objective decision model considering construction costs, operation costs, user charging time costs and distribution network loss costs is established. In order to solve the slow convergence and the inadequate accuracy of standard gravitational search algorithm (GSA), a chaotic map is introduced in the particle initialization and updating phase to enhance the ergodicity of the algorithm. At the same time, a global optimal point to guide speed updating formula is introduced to improve the ability of the algorithm to jump out of the local optimal. Voronoi diagram is used to divide service area of charging station, and a joint solution process of Voronoi diagram and IGSA is proposed. The simulation results prove the feasibility and validity of the model.

Key words: electric vehicles, charging station, location and capacity, voronoi diagram, improved gravity search algorithm

中图分类号: 

  • TM743
[1] 安锋, 康利平, 秦兰芝, 等. 中国传统燃油车退出时间表研究[R]. 北京: 能源与交通创新中心, 2019.
[2] 张帆, 李康, 秦雪亮, 等. 2019—2020年度中国充电基础设施发展年度报告[R]. 北京: 中国电动汽车充电基础设施促进联盟, 2020.
[3] 李逸欣, 林勇, 杨军. 基于改进加权Voronoi图的多场景电动汽车充电网络规划方法[J]. 广东电力, 2019, 32(8): 43-50.
LI Y X, LIN Y, YANG J. Research on multi-scenario planning method for EV charging network based on improved weighted voronoi diagram [J]. Guangdong Electric Power, 2019, 32(8): 43-50.
[4] 丁丹军, 戴康, 张新松, 等. 基于模糊多目标优化的电动汽车充电网络规划[J]. 电力系统保护与控制, 2018, 46(2): 43-50.
DING D J, DAI K, ZHANG X S, et al. Network planning for electric vehicle charging based on fuzzy multi-objective optimization [J]. Power System Protection and Control, 2018, 46(2): 43-50.
[5] 罗清玉, 田万利, 贾洪飞. 考虑通勤需求的电动汽车充电站选址与定容模型[J]. 吉林大学学报(工学版), 2019, 49(5): 1471-1477.
LUO Q Y, TIAN W L, JIA H F. Location and capacity model of electric vehicle charging station considering commuting demand [J]. Journal of Jilin University (Engineering Edition), 2019, 49(5): 1471-1477.
[6] 朱书研, 杨斌, 朱小林. 考虑偏差路径的电动汽车充电站选址和定容[J]. 上海海事大学学报, 2019, 40(1): 44-50.
ZHU S Y, YANG B, ZHU X L. Location and capacity of electric vehicle charging station considering deviation path [J]. Journal of Shanghai Maritime University, 2019, 40(1): 44-50.
[7] 陈静鹏, 艾芊, 肖斐. 基于用户出行需求的电动汽车充电站规划[J]. 电力自动化设备, 2016, 36(6): 34-39.
CHEN J P, AI Q, XIAO F. EV charging station planning based on travel demand [J]. Electric Power Automation Equipment, 2016, 36(6): 34-39.
[8] 陈光, 毛召磊, 李济沅, 等. 计及碳排放的电动汽车充电站多目标规划[J]. 电力系统自动化, 2014, 20(17): 49-53.
CHEN G, MAO Z L, LI J Y, et al. Multi-objective planning of electric vehicle charging stations considering carbon emissions [J]. Automation of Electric Power Systems, 2014, 20(17): 49-53.
[9] 赵书强, 李志伟, 党磊. 基于城市交通网络信息的电动汽车充电站最优选址和定容[J]. 电力自动化设备, 2016, 36(10): 8-15.
ZHAO S Q, LI Z W, DANG L. Optimal EV charging station siting and sizing based on urban traffic network information [J]. Electric Power Automation Equipment, 2016, 36(10): 8-15.
[10] 艾欣, 李一铮, 王坤宇, 等. 基于混沌模拟退火粒子群优化算法的电动汽车充电站选址与定容[J]. 电力自动化设备, 2018, 38(9): 9-14.
AI X, LI Y Z, WANG K Y, et al. Locating and sizing of electric vehicle charging station based on chaotic simulated annealing particle swarm optimization algorithm [J]. Electric Power Automation Equipment, 2018, 38(9): 9-14.
[11] 裴文杰, 汪沨, 谭阳红, 等. 含光伏分布式电源配电网的电动汽车充电站机会约束规划[J]. 电力系统及其自动化学报, 2017, 29(6): 45-52.
PEI W J, WANG F, TAN Y H, et al. Chance-constrained programming for electric vehicle charging stations in distribution network containing photovoltaic distributed generations [J]. Journal of Electric Power System and Automation, 2017, 29(6): 45-52.
[12] 熊虎, 向铁元, 祝勇刚, 等. 电动汽车公共充电站布局的最优规划[J]. 电力系统自动化, 2012(23): 65-70.
XIONG H, XIANG T Y, ZHU Y G, et al. Electric vehicle public charging station location optimal planning [J]. Automation of Electric Power Systems, 2012(23): 65-70.
[13] 闫天泽, 邱晓燕, 刘延博, 等. 基于引入模拟退火思想的改进粒子群算法的电动汽车充电站最优规划[J]. 电测与仪表, 2017, 54(6): 11-16.
YAN T Z, QIU X Y, LIU Y B, et al. Optimal planning of electric charging station based on PSOSA algorithm [J]. Electric Measurement and Instrumentation, 2017, 54(6): 11-16.
[14] 张娟. 电动汽车有序充电策略及充电设施规划研究[D]. 太原: 太原理工大学, 2018, 52-53.
[15] 叶珍. 基于AHP的模糊综合评价方法研究及应用[D]. 广州: 华南理工大学, 2010.
[16] 范炜锋. 万有引力搜索算法的分析与改进[D]. 广州: 广东工业大学, 2014.
[17] 唐俊杰, 陈璟华, 邱明晋. 基于动态模糊混沌粒子群算法的含电动汽车微电网多目标优化调度研究[J]. 广东工业大学学报, 2018, 35(3): 100-106.
TANG J J, CHEN J H, QIU M J. Multi-objective dispatch of microgrid based on dynamic fuzzy chaotic particle swarm algorithm [J]. Journal of Guangdong University of Technology, 2018, 35(3): 100-106.
[1] 张兆轩, 陈璟华, 赵炳耀, 陈友鹏. 考虑集中充电站的电池换电站选址定容规划[J]. 广东工业大学学报, 2021, 38(05): 59-67.
[2] 彭美春, 廖清睿, 曾隆隆, 王嘉浩. 道路营运新能源汽车减碳测算[J]. 广东工业大学学报, 2020, 37(02): 39-44.
[3] 陈璟华, 丁林军, 郭壮志, 粱丽丽, 李锦焙. 计及电动汽车规模化入网的电力系统机组组合优化[J]. 广东工业大学学报, 2017, 34(02): 63-68.
[4] 张志森, 凌玲, 吴百海, 陈镇升. 电动公交汽车机械自动变速(AMT)过程控制[J]. 广东工业大学学报, 2013, 30(4): 74-78.
[5] 吴忠杰; 张国庆; . 混合动力车用镍氢电池的液体冷却系统[J]. 广东工业大学学报, 2008, 25(4): 28-31.
[6] 梁秀玲; 李优新; 王鸿贵; 何鸿肃; 刘方铭; 姚震; . 新型可调磁永磁无刷直流电动机在电动汽车中的应用[J]. 广东工业大学学报, 2004, 21(4): 1-4.
[7] 胡伟; 何鸿肃; . 电动汽车永磁无刷直流电动机全数字化控制[J]. 广东工业大学学报, 2004, 21(1): 13-16.
[8] 罗立元; 何鸿肃; 王鸿贵; 梁秀玲; 姚震; 刘方铭; . 电动汽车驱动装置测试与仿真系统软件的研究[J]. 广东工业大学学报, 2001, 18(4): 14-19.
[9] 陈观生; 史保新; 马国远; . 电动汽车空调压缩机的试验研究[J]. 广东工业大学学报, 2000, 17(2): 11-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!