广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (05): 68-74.doi: 10.12052/gdutxb.200169

• • 上一篇    下一篇

锂离子电池高镍三元正极材料LiNi0.8Co0.1Mn0.1O2研究进展

李越珠1, 黄兴文1, 廖松义2, 刘屹东1, 闵永刚1   

  1. 1. 广东工业大学 材料与能源学院,广东 广州 510006;
    2. 仲恺农业工程学院 化学与化工学院,广东 广州 510225
  • 收稿日期:2020-12-17 出版日期:2021-09-10 发布日期:2021-07-13
  • 通信作者: 廖松义(1990–),男,副教授,博士,主要研究方向为锂离子电池材料的制备及其性能,E-mail:songyiliao@gdut.edu.cn;闵永刚(1963–),男,教授,博士,主要研究方向为有机光电功能材料与器件、高性能聚合物材料等,E-mail:ygmin@gdut.edu.cn E-mail:songyiliao@gdut.edu.cn;ygmin@gdut.edu.cn
  • 作者简介:李越珠(1995–),女,硕士研究生,主要研究方向为锂离子电池材料制备及其性能
  • 基金资助:
    国家自然科学联合基金资助项目(U20A20340);广东省创新创业研究团队计划项目(2016ZT06C412)

Research Progress of High Nickel Ternary Cathode Material LiNi0.8Co0.1Mn0.1O2 for Lithium-ion Batteries

Li Yue-zhu1, Huang Xing-wen1, Liao Song-yi2, Liu Yi-dong1, Min Yong-gang1   

  1. 1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China;
    2. College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
  • Received:2020-12-17 Online:2021-09-10 Published:2021-07-13

摘要: 锂离子电池具有循环寿命高、无记忆效应等优点, 被广泛应用于电子消费产品及电动汽车等诸多领域。伴随着国内电动汽车的快速发展, 对锂离子电池的能量密度、安全性能、成本、热稳定性、循环寿命等提出了更高的要求。电池性能的提升取决于电极材料的改善, 而正极材料作为锂离子电池的核心组成部分, 将直接影响整个电池的性能。高镍三元正极材料LiNi0.8Co0.1Mn0.1O2(以下简称为NCM811)由于极高的放电比容量(>200 mAh/g)而吸引了越来越多人的关注。但是, NCM811较差的热稳定性、循环倍率性以及安全性限制了它在实际中的大规模应用。本文结合NCM811的晶体结构、合成方法以及目前存在的主要问题, 阐述了近几年国内外改善NCM811的电化学性能研究, 并重点介绍表面包覆、离子掺杂和添加剂改性技术对NCM811电化学性能的影响。

关键词: 锂离子电池, 高镍三元正极材料, LiNi0.8Co0.1Mn0.1O2(NCM811), 改性技术, 导电添加剂

Abstract: Lithium-ion batteries (LIBs) are widely used in many fields such as electronic products and vehicles due to their long-term cycling and no-memory effect. With the rapid development of domestic electric vehicles, higher requirements are put forward for the energy density, safety performance, cost, thermal stability, and cycle life of lithium-ion batteries. However, the battery performances depend deeply on the improvement of electrode materials. As the key component of LIBs, the cathode materials will directly affect the battery performances. Therefore, the nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode (hereinafter referred to as NCM811) has attracted more and more attention owing to its extremely high discharge capacity (> 200 mAh/g). However, the poor thermal stability, cycle rate, and safety of NCM811 restrict its large-scale application in practice. Combining the crystal structure, synthesis method and current main problems of NCM811, the improving technology is summarized for electrochemical performance of nickel-rich NCM811 in recent years, focusing on the surface coating, ion doping and additive modification.

Key words: lithium-ion battery, high nickel ternary cathode material, LiNi0.8Co0.1Mn0.1O2 (NCM811), modification technology, conductive additive

中图分类号: 

  • TO430
[1] WITTINGHAM M S. Lithium batteries and cathode materials [J]. Chemical Reviews, 2004, 104(10): 4271-4301.
[2] LIUW, OH P, LIU X, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries [J]. Angewandte Chemie International Edition, 2015, 54(15): 4440-4457.
[3] MANTHIRAM A, SONG B, LI W. A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries [J]. Energy Storage Materials, 2017, 6: 125-139.
[4] AHN Y K, PARK J, SHIN D, et al. Enhanced electrochemical capabilities of lithium-ion batteries by structurally ideal AAO separator [J]. Journal of Materials Chemistry A, 2015, 3(20): 10715-10719.
[5] ROZIER P, TARASCO J M. Review Li-rich layered oxide cathodes for next generation Li-ion batteries: chances and challenges [J]. Journal of the Electro-chemical Society, 2015, 162(14): A2490-A2499.
[6] 朱灿, 林豪慧, 向林芳. 新能源汽车领域研究进展及前沿动态基于CitespaceⅢ知识图谱分析[J]. 广东工业大学学报, 2020, 37(2): 45-52.
ZHU C, LIN H H, XIANG L F. Research process and forward trends of new energy vehicles based on the knowledge map analysis of cite spaceⅢ [J]. Journal of Guangdong University of Technology, 2020, 37(2): 45-52.
[7] DARCOVICH K, HENQUIN E R, KENNEY B, et al. Higher-capacity lithium-ion battery chemistries for improved residential energy storage with micro-cogeneration [J]. Applied Energy, 2013, 111: 853-861.
[8] KOJIMA T, ISHIZU T, HORIBA T, et al. Development of lithium-ion battery for fuel cell hybrid electric vehicle application [J]. Journal of Power Sources, 2009, 189(1): 859-863.
[9] SCHIPPER F, ERICKSON E M, ERK C, et al. Review-recent advances and remaining challenges for lithium-ion battery cathodes [J]. Journal of the Electro-chemical Society, 2017, 164(1): A6220-A6228.
[10] SUN Y K, KANG H B, MYUNG S T, et al. Effect of manganese content on the electrochemical and thermal stabilities of LiNi0.58Co0.28-xMn0.14+xO2 cathode materials for lithium-ion batteries [J]. Journal of the Electrochemical Society, 2010, 157(12): A1335-A1340.
[11] LEE B R, NOH H J, MYUNG S T, et al. High-voltage performance of LiNi0.55Co0.15Mn0.30 O2 positive electrode material for rechargeable Li-ion batteries [J]. Journal of the Electrochemical Society, 2011, 158(2): A180-A186.
[12] 马璨, 吕迎春, 李泓. 锂离子电池基础科学问题(VⅡ)——正极材料[J]. 储能科学与技术, 2014, 3(1): 53-65.
MA C, LYU Y C, LI H. Basic scientific issues of lithium-ion batteries (VⅡ)cathode materials [J]. Energy Storage Science and Technology, 2014, 3(1): 53-65.
[13] LUO S, WANG K, WANG J, et al. Binder free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries [J]. Advanced Materials, 2012, 43(30): 2294-2298.
[14] TANG D, SUN Y, YANG Z, et al. Surface structure evolution of LiMn2O4cathode material upon charge/discharge [J]. Chemistry of Materials, 2014, 26(11): 3535-3543.
[15] OLJACA M, BLIZANAC B, PASQUIER A D, et al. Novel Li (Ni1/3Co1/3Mn1/3)O2 cathode morphologies for high power Li-ion batteries [J]. Journal of Power Sources, 2014, 248: 729-738.
[16] 朱晓栋, 金嘉麟. 后处理工艺对磷酸铁锂正极材料性能的影响[J]. 日用电器, 2018, 43(04): 38-41.
ZHU X D, JIN J L. The effect of post-treatment process on the performance of lithium iron phosphate cathode material [J]. Daily Appliance, 2018, 43(04): 38-41.
[17] BAK S M, NAM K W, LEE C W, et al. Spinel LiMn2O4/reduced graphene oxide hybrid for high rate lithium-ion batteries [J]. Journal of Materials Chemistry, 2011, 21(43): 17309-17315.
[18] 刘小虹, 李国敏. 高电压钴酸锂正极材料掺杂、包覆及复合改性[J]. 电池工业, 2019, 23(6): 314-318.
LIU X H, LI G M. Doping, coating and composite modification of high voltage lithium cobalt oxide cathode materials [J]. Battery Industry, 2019, 23(6): 314-318.
[19] 吴宇平. 锂离子电池. 应用与实践[M]. 2版. 北京: 化学工业出版社, 2012.
[20] ZHANG H, ZHAO H, KHAN M A, et al. Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries [J]. Journal of Materials Chemistry A, 2018, 6: 20564-20620.
[21] GUO Z, GAOL, XU Z, et al. High electrical conductivity 2D MXene Serves as additive of Perovskite for Efficient solar cells [J]. Small, 2018, 14(47): 10719-10726.
[22] XUE L L, LI Y J, XU B, et al. Effect of Mo doping on the structure and electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode material at high cut-off voltage [J]. Journal of Alloys & Compounds An Inter-disciplinary Journal of Materials Science & Solid State Chemistry & Physics, 2018, 748: 561-568.
[23] LV C, YANG J, PENG Y, et al. 1DNb-doped LiNi1/3Co1/3Mn1/3O nano-structures as excellent cathodes for Li-ion battery [J]. Electrochimica Acta, 2018, 297: 258-266.
[24] LI X, ZHANG K J, WANG M S, et al. Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2 [J]. Sustain-able Energy & Fuels, 2018, 10(2): 413-4241.
[25] BI Y, YANG W, PENG Z, et al. Imp-roved cyclic stability of LiNi0.8Co0.1Mn0.1O2 via Ti substitution with a cut-off potential of 4.5 V [J]. Ceramics International, 2015, 41(5): 7133-7139.
[26] LIAO S Y, HUANG X W, RAO Q S, et al. A multifunctional MXene additive for enhancing the Mechanical and electrochemical performances of the LiNi0.8Co0.1Mn0.1O2 cathode in lithium-ion batteries [J]. Journal of Materials Chemistry A, 2020, 8: 4494-4504.
[27] TIAN R, ZHOU Y, DUAN H, et al. MOF-derived hollow Co3S4 quasi-polyhedron/MWCNT nano-composites as electrodes for advanced lithium ion batteries and supercapacitors [J]. ACS Applied Energy Materials, 2018, 1(2): 402-410.
[28] LIU X, CHEN Q, LI Y, et al. Synergistic modification of magnesium fluoride/sodium for improving the electrochemical performances of high nickel ternary NCM811 cathode materials [J]. Journal of the Electrochemical Society, 2019, 166(14): A3480-A3486.
[29] KIM H B, PARK B C, MYUNG S T, et al. Electrochemical and thermal characterization of AlF3-coated LiNi0.8Co0.15Al0.05 O2 cathode in lithium-ion cells [J]. Journal of Power Sources, 2008, 179(1): 347-350.
[30] XIONG X, WANG Z, YIN X, et al. A modified LiF coating process to enhance the electrochemical performance characteristics of LiNi0.8Co0.1Mn0.1O2 cathode materials [J]. Materials Letters, 2013, 110: 4-9.
[31] TANG W, CHEN Z, XIONG F, et al. An effective etching-induced coating strategy to shield LiNi0.80Co0.1Mn0.1O2 electrode materials by LiAlO2 [J]. Journal of Power Sources, 2019, 42: 246-254.
[32] LEE S H, PARK G J, SIM S J, et al. Improved electrochemical performances of LiNi0.8Co0.1Mn0.1O2 cathode-via SiO2 coating [J]. Journal of Alloys andCompounds, 2019, 791: 193-199.
[33] CHAE B J, YIM T. Effect of surfacemodification using a sulfate-based surfactant on the electrochemical performance of Ni-rich cathode materials [J]. Materials Chemistry and Physics, 2018, 214: 66-72.
[34] BELHAROUAK I, SUN Y K, LIU J, et al. Li (Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications [J]. Journal of Power Sources, 2003, 123(2): 247-252.
[35] 王伟东, 仇卫华, 丁倩倩. 锂离子电池三元材料[M]. 北京: 化学工业出版社, 2015.
[36] 张翔, 王春雷, 孔继周, 等. 浅析共沉淀法合成锂电池层状Li-Ni-Co-Mn-O正极材料[J]. 化工进展, 2014, 33(11): 2991-2999.
ZHANG X, WANG C L, KONG J Z, et al. Analysis on the synthesis offlayered Li-Ni-Co-Mn-O cathode materials for lithium batteries by coprecipitation method [J]. Chemical Industry Progress, 2014, 33(11): 2991-2999.
[37] 王兆翔, 陈立泉, 黄学杰. 锂离子电池正极材料的结构设计与改性[J]. 化学进展, 2011, 23(Z1): 284-301.
WANG Z X, CHEN L Q, HUANG X J. Structural design and modification of cathode materials for lithium-ion batteries [J]. Progress in Chemistry, 2011, 23(Z1): 284-301.
[38] 李军, 刘建军, 李少芳, 等. 锂离子电池三元正极材料镍钴铝酸锂的研究进展[J]. 化工新型材料, 2016, 44(6): 49-51.
LI J, LIU J J, LI S F, et al. Research progress of nickel cobalt Lithium-aluminate as ternary cathode material for lithium-ion batteries [J]. New Chemical Materials, 2016, 44(6): 49-51.
[39] 陈永, 杜宝东, 陆杨. 一种放射状结构球形NCM811型三元正极材料的制备方法. CN110330060A [P]. 2019-10-15.
[40] 冯耀华. 高镍型锂离子电池正极材料LiNi0.8Co0.1Mn0.1O2制备及改性[D]. 兰州: 兰州理工大学, 2020.
[41] 刘治芳. 简单金属氧化物对高镍层状正极材料LiNi0.8Co0.1Mn0.1O2的表面包覆研究[D]. 天津: 天津大学, 2018.
[42] XIONG X, WANG Z, YIN X, et al. A modified LiF coating process to enhance the electrochemical performance characteristics of LiNi0.8Co0.1Mn0.1O2 cathode materials [J]. Materials Letters, 2013, 110(1): 4-9.
[43] JAEPHIL C T, JISUK K, MIJUNG N, et al. Synthesis, thermal, and electrochemical properties of AlPO4-coated LiNi0.8Co0.1Mn0.1O2 cathode Materials for a Li-ion cell [J]. Journal of The Electrochemical Society, 2004, 151(11): A1899-A1904.
[44] XIAO Z, HU C, SONG L, et al. Modification research of LiAlO2-Coated LiNi0.8Co0.1Mn0.1O2 as a cathode material for lithium-ion battery [J]. Ionics, 2017, 24(1): 91-98.
[45] WOO S G, HAN J H, KIM K J, et al. Surface modification by sulfated zirconia on high-capacity nickel-based cathode materials for Li-ion batteries [J]. Electrochimica Acta, 2015, 153: 115-121.
[46] HUANG J, FANG X, WUY, et al. Enhanced electrochemical performance of LiNi0.8CO0.1Mn0.1O2 by surface modification with lithium active MoO3 [J]. Journal of Electro-analytical Chemistry, 2018, 823: 359-367.
[47] LI L J, WANGZ X, LIU Q C, et al. Effects of chromium on the structural surface chemistry and electrochemicalof layered LiNi0.8xCo0.1Mn0.1CrxO2 [J]. Electrochimica Acta, 2012, 77: 89-96.
[48] VU D L, LEE J W. Na-doped layered LiNi0.8Co0.1Mn0.1O2 with improved rate capability and cycling stability [J]. Journal of Solid State Electro-chemistry, 2017, 22: 1165-1173.
[49] WOO S W, MYUNG S T, BANG H, et al. Improvement of electro-chemical and thermal properties of LiNi0.8Co0.1Mn0.1O2 positive electrode materials by multiple metal (Al, Mg) substitution [J]. Electrochimica Acta, 2009, 54(15): 3851-3856.
[50] CHAE B J, JUNG Y E, LEE C Y, et al. Metal organic framework as a multifunctional additive for selectively trapping transition-metal componcnts in lithium-ionbatteries [J]. Sustainable Chemistry & Engineering, 2018, 6(7): 8547-8553.
[51] FAN Q, YANG S, LIU J, et al. Mixed conducting interlayer boosting the electrochemical performance of Ni-rich layered oxide cathode materials for lithium-ion batteries [J]. Journal of Power Sources, 2019, 421(1): 91-99.
[52] RAO Q S, LIAO S Y, HUANG X W, et al. Assembly of MXene/PP separator and its enhancement for Ni-rich LiNi0.8Co0.1Mn0.1O2 electro-chemical performance [J]. Polymers, 2020, 12(10): 2192-2202.
[1] 曾丽珍, 郑雄文. 锂离子电池成膜添加剂丙烯基-1,3-丙磺酸内酯还原机理研究[J]. 广东工业大学学报, 2017, 34(05): 86-90.
[2] 李新喜, 袁晓娇, 张国庆, 张新河, 张磊. 锂离子电池硅/石墨复合负极材料的制备及性能研究[J]. 广东工业大学学报, 2014, 31(2): 27-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!