广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (04): 32-35,45.doi: 10.12052/gdutxb.210002

• • 上一篇    下一篇

半互补集合的相依切锥和极限法锥的刻画

贾玲玲, 刘玉兰   

  1. 广东工业大学 数学与统计学院, 广东 广州 510520
  • 收稿日期:2021-01-06 出版日期:2022-07-10 发布日期:2022-06-29
  • 通信作者: 刘玉兰(1977–),女,副教授,博士,主要研究方向为最优化理论及应用,E-mail:ylliu@gdut.edu.cn
  • 作者简介:贾玲玲(1997–),女,硕士研究生,主要研究方向为最优化理论及应用
  • 基金资助:
    广东省自然科学基金资助项目(2020A1515010408)

Characterization of Contingent Tangent Cone and Limiting Norm Cone to Half Complementary Set

Jia Ling-ling, Liu Yu-lan   

  1. School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2021-01-06 Online:2022-07-10 Published:2022-06-29

摘要: 根据零模函数的变分性质,带有零模约束的优化问题、零模正则问题和零模极小化问题都可以转化为带有半互补约束集合的约束优化问题。而刻画约束优化问题的约束集合的相依切锥和极限法锥,对获得该优化问题的最优性条件起着至关重要的作用。本文主要刻画了半互补集合的相依切锥、正则法锥和极限法锥,丰富了非连续、非凸规划问题的最优性理论,为进一步研究带有零模约束的优化问题、零模正则问题和零模极小化问题奠定了理论基础。

关键词: 零模, 半互补集合, 相依切锥, 正则法锥, 极限法锥

Abstract: According to the variational properties of zero-norm function, the optimizations with zero-norm constraint or zero-norm regularized optimizations or zero-nom minimized problems can be reformed to the constraint optimizations with half complementary set. It is well known that the characterization of contingent tangent cone and limiting norm cone to the constraint set is crucial in proposing the optimal conditions for these optimizations. The contingent tangent cone, regular norm cone and limiting norm cone are characterized to the half complementary set. It enriches the optimality theory of discontinuous and nonconvex programming problems and gives a key theoretical basis to study further these optimization problems.

Key words: zero-norm, half complementary set, contingent tangent cone, regular norm cone, limiting norm cone

中图分类号: 

  • O224
[1] BIENTOCK D. Computational study of a family of mixed-integer quadratic programming problems [J]. Mathematical Programming, 1996, 74(2): 121-140.
[2] CANDES, E J, WAKIN M B. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
[3] GAO J, LI D. Optimal cardinality constrained portfolio selection [J]. Operations Research, 2013, 61(3): 745-761.
[4] GAO J, LI D. A polynomial case of the cardinality-constrained quadratic optimization problem [J]. Journal of Global Optimization, 2013, 56(4): 1441-1455.
[5] LI D, SUN X, WANG J. Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection [J]. Mathematical Finance, 2006, 16(1): 83-101.
[6] MILLER R, MILLER J A, MILLER J F A P. Subset selection in regression[M]. Boca Raton, FL: CRC Press, 2002.
[7] LORENZO D D, LIUZZI G, RINALDI F, et al. A concave optimization-based approach for sparse portfolio selection [J]. Optimization Methods & Software, 2012, 27(6): 983-1000.
[8] MURRAY W, SHEK H. A local relaxation method for the cardinality constrained portfolio optimization problem [J]. Computational Optimization and Applications, 2012, 53: 681-709.
[9] SUN X, ZHENG X, LI D. Recent advances in mathematical programming with semicontinuous variables and cardinality constraint [J]. Journal of the Operational Research Society, 2013, 77(1): 55-77.
[10] FENG M, MITCHELL J E, PANG J S, et al. Complementary formulations of l0 norm optimization problems [J]. Industrial Engineering and Management Sciences, 2013, 1: 11-21.
[11] BURDAKOV O P, KANZOW C, SCHWARTE A. Mathematical programs with cardinality constraints: reformulation by complementarity-type conditions and a regularization method [J]. SIAM Journal on Optimization, 2015, 26(1): 397-425.
[12] BI S, PAN S. Multistage convex relaxation approach to rank regularized minimization problems based on equivalent mathematical program with a generalized complementarity constraint [J]. SIAM Journal on Control and Optimization, 2017, 55(4): 2493-2518.
[13] LIU Y, BI S, PAN S. Equivalent lipschitz surrogates for zero-norm and rank optimization problems [J]. Journal of Global Optimization, 2018, 72(4): 679-704.
[14] LIU Y, BI S, PAN S. Several classes of stationary points for rank regularized minimization problems [J]. SIAM Journal on Optimization, 2020, 30(2): 1756-1775.
[15] PAN L, XIU N, ZHOU S. On solutions of sparsity constrained optimization [J]. Journal of the Operations Research Society of China, 2015, 3(4): 421-439.
[16] ROCKAFELLAR R T, WET R J. Variational Analysis[M]. New York: Springer, 1998.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!