广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (04): 32-35,45.doi: 10.12052/gdutxb.210002
贾玲玲, 刘玉兰
Jia Ling-ling, Liu Yu-lan
摘要: 根据零模函数的变分性质,带有零模约束的优化问题、零模正则问题和零模极小化问题都可以转化为带有半互补约束集合的约束优化问题。而刻画约束优化问题的约束集合的相依切锥和极限法锥,对获得该优化问题的最优性条件起着至关重要的作用。本文主要刻画了半互补集合的相依切锥、正则法锥和极限法锥,丰富了非连续、非凸规划问题的最优性理论,为进一步研究带有零模约束的优化问题、零模正则问题和零模极小化问题奠定了理论基础。
中图分类号:
[1] BIENTOCK D. Computational study of a family of mixed-integer quadratic programming problems [J]. Mathematical Programming, 1996, 74(2): 121-140. [2] CANDES, E J, WAKIN M B. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. [3] GAO J, LI D. Optimal cardinality constrained portfolio selection [J]. Operations Research, 2013, 61(3): 745-761. [4] GAO J, LI D. A polynomial case of the cardinality-constrained quadratic optimization problem [J]. Journal of Global Optimization, 2013, 56(4): 1441-1455. [5] LI D, SUN X, WANG J. Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection [J]. Mathematical Finance, 2006, 16(1): 83-101. [6] MILLER R, MILLER J A, MILLER J F A P. Subset selection in regression[M]. Boca Raton, FL: CRC Press, 2002. [7] LORENZO D D, LIUZZI G, RINALDI F, et al. A concave optimization-based approach for sparse portfolio selection [J]. Optimization Methods & Software, 2012, 27(6): 983-1000. [8] MURRAY W, SHEK H. A local relaxation method for the cardinality constrained portfolio optimization problem [J]. Computational Optimization and Applications, 2012, 53: 681-709. [9] SUN X, ZHENG X, LI D. Recent advances in mathematical programming with semicontinuous variables and cardinality constraint [J]. Journal of the Operational Research Society, 2013, 77(1): 55-77. [10] FENG M, MITCHELL J E, PANG J S, et al. Complementary formulations of l0 norm optimization problems [J]. Industrial Engineering and Management Sciences, 2013, 1: 11-21. [11] BURDAKOV O P, KANZOW C, SCHWARTE A. Mathematical programs with cardinality constraints: reformulation by complementarity-type conditions and a regularization method [J]. SIAM Journal on Optimization, 2015, 26(1): 397-425. [12] BI S, PAN S. Multistage convex relaxation approach to rank regularized minimization problems based on equivalent mathematical program with a generalized complementarity constraint [J]. SIAM Journal on Control and Optimization, 2017, 55(4): 2493-2518. [13] LIU Y, BI S, PAN S. Equivalent lipschitz surrogates for zero-norm and rank optimization problems [J]. Journal of Global Optimization, 2018, 72(4): 679-704. [14] LIU Y, BI S, PAN S. Several classes of stationary points for rank regularized minimization problems [J]. SIAM Journal on Optimization, 2020, 30(2): 1756-1775. [15] PAN L, XIU N, ZHOU S. On solutions of sparsity constrained optimization [J]. Journal of the Operations Research Society of China, 2015, 3(4): 421-439. [16] ROCKAFELLAR R T, WET R J. Variational Analysis[M]. New York: Springer, 1998. |
No related articles found! |
|