广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (04): 66-72.doi: 10.12052/gdutxb.210123
熊武, 刘义
Xiong Wu, Liu Yi
摘要: 高铁因每天清晨需要6h的空窗期维修时间而无法通行,社会的发展需要减少空窗期时间来提高高铁运转效率。传统的基于北斗卫星导航系统(BeiDou Navigation Satellite System, BDS)的高铁铁轨路基的形变监测系统需要一天的观测时长对路基进行精确的监测,这远超高铁空窗期的观测时长无法对提高高铁运转效率起到作用。针对这种情况,在原形变监测解算算法上加入粒子滤波算法,尝试将观测时长缩减到高铁空窗期内;同时,在采样数据大幅度下降的情况下确保解算的监测点坐标值满足高铁路基的定位精度要求。本文利用广汕高铁的BDS形变监测系统的实测采样数据进行实验仿真,验证了粒子滤波算法加入后的有效性。实验结果表明,在粒子滤波算法加持下,观测时长缩减到15 min可确保监测点解算坐标值的$ A,B,H $ 3个方向精度均满足高铁路基定位的±5 mm精度要求,为减少高铁空窗期时间,提升高铁运转效率提供了有效的方法和思路。
中图分类号:
[1] 胡友健, 梁新美, 许成功. 论GPS变形监测技术的现状与发展趋势[J]. 测绘科学, 2006(5): 155-157. HU Y J, LIANG X M, XU C G. On the status quo and development trend of GPS technology for deformation monitoring [J]. Science of Surveying and Mapping, 2006(5): 155-157. [2] 王勇刚, 周俊萍, 李永江, 等. 基于惯性定位定向的高铁轨检仪分析研究[J]. 导航定位与授时, 2018, 5(2): 70-74. WANG Y G, ZHOU J P, LI Y J, et al. Analytical research of the inspecting instrument for high speed railway track based on the inertial position and azimuth determining technology [J]. Navigation Positioning and Timing, 2018, 5(2): 70-74. [3] 代志宏, 卢鹏, 张志芳, 等. 基于PS-InSAR技术的南宁地表沉降监测与分析[J]. 大地测量与地球动力学, 2021, 41(5): 491-496. DAI Z H, LU P, ZHANG Z F, et al. Surface subsidence monitoring and analysis of Nanning based on PS-InSAR technology [J]. Journal of Geodesy and Geodynamics, 2021, 41(5): 491-496. [4] 方新建. 基于GPS/BDS组合的矿区地表变形监测高精度解算模型构建及实现[D]. 淮南: 安徽理工大学, 2019. [5] 徐纵, 黄陆明, 李博, 等. 采用北斗卫星导航系统的超高压变电站GIS变形监测精度分析[J]. 浙江电力, 2021, 40(4): 101-107. XU Z, HUANG L M, LI B, et al. Analysis of GIS deformation monitoring accuracy in EHV substation using Beidou satellite navigation system [J]. Zhejiang Electric Power, 2021, 40(4): 101-107. [6] 陈锋. GPS测量技术在桥梁工程变形观测中的应用研究[J]. 建材与装饰, 2016(44): 272-273. [7] 姜卫平, 刘鸿飞, 刘万科, 等. 西龙池上水库GPS变形监测系统研究及实现[J]. 武汉大学学报(信息科学版), 2012, 37(8): 949-952. JIANG W P, LIU H F, LIU W K, et al. CORS development for Xilongchi dam deformation monitoring [J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 949-952. [8] 李岚, 张云, 史宝明. 融合Mean-shift与粒子滤波改进算法的自适应人脸跟踪[J]. 工业仪表与自动化装置, 2016(1): 82-85. LI L, ZHANG Y, SHI B M. Improved adaptive algorithm in face tracking of fusing Mean-shift and particle filtering [J]. Industrial Instrumentation and Automation Device, 2016(1): 82-85. [9] 李会莹. 鲁棒滤波问题的若干研究[D]. 南京: 南京理工大学, 2007. [10] 郝晶晶. 基于贝叶斯推理的故障诊断方法研究[D]. 北京: 北京交通大学, 2012. [11] 朱福利, 曾碧, 曹军. 基于粒子滤波的SLAM算法并行优化与实现[J]. 广东工业大学学报, 2017, 34(2): 92-96. ZHU F L, ZENG B, CAO J. Parallel optimization and implementation of SLAM algorithm based on particle filter [J]. Journal of Guangdong University of Technology, 2017, 34(2): 92-96. [12] 张亚楠, 孙丰财, 史旭华. 一种改进RBPF激光SLAM算法[J]. 无线通信技术, 2017, 26(4): 16-20. ZHANG Y N, SUN F C, SHI X H. An improved RBPF-laser-SLAM algorithm [J]. Wireless Communication Technology, 2017, 26(4): 16-20. [13] 蔡登禹, 刘以安. 一种基于遗传算法的改进粒子滤波器[J]. 计算机仿真, 2018, 35(7): 221-225. CAI D Y, LIU Y A. Improved particle filter based on genetic algorithm [J]. Computer Simulation, 2018, 35(7): 221-225. [14] 霍富功, 王诗琴. 基于多特征融合的转移粒子滤波红外小目标跟踪算法研究[J]. 信息与电脑(理论版), 2018(12): 56-59. HUO F G, WANG S Q. Research on infrared small target tracking algorithm based on multi feature fusion [J]. Information & Computer (Theoretical Edition), 2018(12): 56-59. [15] 谢宏远, 刘逸, 候权, 等. 基于粒子滤波和遗传算法的氢燃料电池剩余使用寿命预测[J]. 东北电力大学学报, 2021, 41(1): 56-64. XIE H Y, LIU Y, HOU Q, et al. Prediction of PEMFC based on particle filter and genetic algorithm [J]. Journal of Northeast Electric Power University, 2021, 41(1): 56-64. [16] 孟庆旭. 粒子滤波算法研究及其在非线性估计中的应用[D]. 武汉: 华中科技大学, 2019. |
[1] | 陈文彬, 王华, 吴希文. 1"与3"SRTM DEM在珠江三角洲地区InSAR形变监测中的应用效果比较[J]. 广东工业大学学报, 2018, 35(02): 41-45. |
[2] | 朱福利, 曾碧, 曹军. 基于粒子滤波的SLAM算法并行优化与实现[J]. 广东工业大学学报, 2017, 34(02): 92-96. |
[3] | 吴用, 万频, 王永华, 梁颋, 卢强. 认知无线网络小型移动主用户的定位算法研究[J]. 广东工业大学学报, 2017, 34(01): 60-64. |
|