广东工业大学学报 ›› 2023, Vol. 40 ›› Issue (03): 46-51.doi: 10.12052/gdutxb.210137

• • 上一篇    下一篇

铝硅合金相变储热装置保温结构实验研究

程子杰1, 陈观生1, 刘良德1, 毛凌波1, 罗超鸿1, 许佳孟1, 谢鹏2, 金露2, 谯耕2   

  1. 1. 广东工业大学 材料与能源学院, 广东 广州 510006;
    2. 全球能源互联网欧洲研究院, 柏林 10623, 德国
  • 收稿日期:2021-09-14 出版日期:2023-05-25 发布日期:2023-06-08
  • 通信作者: 陈观生(1970-),男,副教授,博士,主要研究方向为太阳能热利用、相变储热及热泵技术,E-mail:chengs@gdut.edu.cn
  • 作者简介:程子杰(1998-),男,硕士研究生,主要研究方向为相变储能
  • 基金资助:
    广州市科技计划项目(201902010021)

An Experimental Study of Thermal Insulation Structure of Al-Si Alloy Phase Change Heat Storage Device

Cheng Zi-jie1, Chen Guan-sheng1, Liu Liang-de1, Mao Ling-bo1, Luo Chao-hong1, Xu Jia-meng1, Xie Peng2, Jin Lu2, Qiao Geng2   

  1. 1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China;
    2. Global Energy Interconnection Research Institute Europe GmbH, Berlin 10623, Germany
  • Received:2021-09-14 Online:2023-05-25 Published:2023-06-08

摘要: 保温结构直接影响储热装置的储热性能。针对铝硅合金相变储热装置的保温问题,本文提出了4种不同的保温结构,测试了不同保温结构下储热装置的外壳温度、耗散功率及其储热效率并进行对比,得出最佳保温结构。研究结果表明,在储热体温度为600 ℃时,玻璃棉、普通气凝胶、复合气凝胶及真空夹层复合气凝胶4种保温结构的外壳温度分别为91,54,51,41 ℃,耗散功率分别为589,364,325,151 W,实测储热效率分别为0.64,0.85,0.88,0.94,真空夹层复合气凝胶的保温性能最佳。

关键词: 铝硅合金, 相变储热, 保温结构, 耗散功率, 储热效率

Abstract: The heat storage performance of heat storage device is directly affected by its’ thermal insulation structure. The application of Al-Si alloy in phase change energy storage is limited by the heat loss caused by its high working temperature. Aiming at the thermal insulation problem of high temperature phase change heat storage device, four different insulation structures such as glass wool, aerogel, composite aerogel and vacuum sandwich composite aerogel, used in the Aluminum-silicon alloy phase change heat storage device with the working temperature as high as 600 ℃, are put forward. A series of heat storage, thermal insulation and thermal release experiments are carried out, the thermal insulation performance compared including the shell temperature, the dissipated power and the thermal efficiency, and the influence of thermal insulation materials and vacuum interlayer on thermal insulation performance analyzed and studied. The results show that when the heat storage temperature is 600 ℃, the shell temperatures of glass wool, aerogel, composite aerogel and vacuum sandwich composite aerogel are, respectively, 91 ℃, 54 ℃, 51 ℃ and 41 ℃, the dissipated power is 589 W, 364 W, 325 W and 151 W, and the thermal efficiency is 0.64, 0.85, 0.88 and 0.94, respectively. The thermal insulation performance of vacuum sandwich composite aerogel is the best.

Key words: Al-Si alloy, phase change heat storage, thermal insulation structure, dissipated power, store thermal efficiency

中图分类号: 

  • TK02
[1] ZHAO Y X, ZHANG X L, HUA W S. Review of preparation technologies of organic composite phase change materials in energy storage[J]. Journal of Molecular Liquids, 2021, 336: 115923. DOI 10.1016/j.molliq.2021.115923
[2] NAZIR H, BATOOL M, OSORIO F, et al. Recent developments in phase change materials for energy storage applications: a review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523
[3] SAHA S, RUSLAN A, MORSHED A, et al. Global prospects and challenges of latent heat thermal energy storage: a review [J]. Clean Technologies and Environmental Policy, 2021, 23(6): 1-29.
[4] 赵静, 周增产, 卜云龙, 等. 电热高温相变储能装置设计与应用[J]. 农业工程, 2016, 6(6): 98-109.
ZHAO J, ZHOU Z C, PU Y L, et al. Design and application of electric heating high temperature phase change energy storage device [J]. Agricultural Engineering, 2016, 6(6): 98-109.
[5] VERDIER D, FERRIÈRE A, FALCOZ Q, et al. Experimentation of a high temperature thermal energy storage prototype using phase change materials for the thermal protection of a pressurized air solar receiver[J]. Energy Procedia, 2014, 49: 1044-1053.
[6] WATERSON M. The characteristics of electricity storage, renewables and markets[J]. Energy Policy, 2017, 104: 466-473.
[7] MURAT K, KHAMID M. Solar energy storage using phase change materials[J]. Renewable and Sustainable Energy Reviews, 2007, 11: 1913-1965.
[8] ZHAO B C, CHENG M S, LIU C, et al. Cyclic thermal characterization of a molten-salt packed-bed thermal energy storage for concentrating solar power[J]. Applied Energy, 2017, 195: 761-773.
[9] 刘超. 用于余热回收的相变蓄热换热装置的实验研究[D]. 北京: 北京建筑大学, 2020.
[10] 崔海亭, 彭培英, 蒋静智. 铝硅合金相变储热材料及储热换热器现状与展望[J]. 材料导报, 2014, 28(23): 72-75.
CUI H T, PENG P Y, JIANG J Z. The status and prospect on Al-Si alloy and heat storage unit as phase change material for thermal energy storage [J]. Materials Review, 2014, 28(23): 72-75.
[11] 李辉鹏, 张仁元, 毛凌波, 等. 铝硅合金热稳定性能的试验研究[J]. 广东工业大学学报, 2009, 26(4): 37-41.
LI H P, ZHANG R Y, MAO L B, et al. A tentative study of the heat storage properties of Al-Si alloy [J]. Journal of Guangdong University of Technology, 2009, 26(4): 37-41.
[12] LI L, LIU X, WANG G, et al. Research progress of ultrafine alumina fiber prepared by sol-gel method: a review[J]. Chemical Engineering Journal, 2020, 421: 127744. DOI 10.1016/j.cej.2020.127744.
[13] HSISSOU R, SEGHIRI R, BENZEKRI Z, et al. Polymer composite materials: a comprehensive review[J]. Composite Structures, 2021, 262: 113640. DOI 10.1016/j.compstruct.2021.113640.
[14] PETRIČEVIĆ R, GLORA M, MÖGINGER A, et al. Skin formation on RF aerogel sheets [J]. Journal of Non-Crystalline Solids, 2001, 285(1/2/3): 272-276.
[15] KORKMAZ S, KARIPER A. Graphene and graphene oxide based aerogels: synthesis, characteristics and supercapacitor applications[J]. The Journal of Energy Storage, 2019, 27(8) : 101038. DOI 10.1016/j.est.2019.101038.
[16] GAO X R, XING Z, LI Z, et al. A review on recent advances in carbon aerogels: their preparation and use in alkali-metal ion batteries [J]. New Carbon Materials, 2020, 35(5): 486-507.
[17] SHANG L, LYU Y, HAN W. Microstructure and thermal insulation property of silica composite aerogel[J]. Materials, 2019, 12(6) : 993. DOI 10.3390/ma12060993.
[18] LATIFI F, TALEBI Z, KHALILI H, et al. Effect of processing parameters and pore structure of nanostructured silica aerogel on the physical properties of aerogel blankets[J]. Materials Research Express, 2018, 5(5) : 055020. DOI 10.1088/2053-1591/aac1e2.
[19] ZHANG X, LI N, HU Z, et al. Direct fabrication of poly(p-phenylene terephthalamide) aerogel and its composites with great thermal insulation and infrared stealth[J]. Chemical Engineering Journal, 2020, 388: 124310. DOI 10.1016/j.cej.2020.124310
[20] 张双喜, 杨莉萍, 郭铁明, 等. 超细玻璃棉导热系数的研究[J]. 新型建筑材料, 2005(5) : 50-52.
[21] 李石栋, 张仁元, 毛凌波, 等. 太阳能热发电用Al-Si合金的传热性能试验[J]. 华中科技大学学报:自然科学版, 2009, 37(8): 73-76.
LI S D, ZHANG R Y, MAO L B, et al. Experimental study on heat transfer performance of Al-Si alloys used in solar thermal power generation [J]. Huazhong Univ of Sci & Tech (Natural Science Edition), 2009, 37(8): 73-76.
[1] 李辉鹏; 张仁元; 毛凌波; 刘宗建; . 铝硅合金热稳定性能的试验研究[J]. 广东工业大学学报, 2009, 26(4): 37-41.
[2] 陈枭; 毛凌波; 陈志鹏; 莫德禧; 李诚悦; . 储热锅炉换热管的高温腐蚀研究[J]. 广东工业大学学报, 2009, 26(4): 42-44.
[3] 李辉鹏; 张仁元; 陈枭; 刘宗建;. 盛装储热铝硅共晶合金的容器材料研究[J]. 广东工业大学学报, 2009, 26(2): 6-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!