广东工业大学学报 ›› 2023, Vol. 40 ›› Issue (03): 52-58.doi: 10.12052/gdutxb.220017

• • 上一篇    下一篇

小型化腔体宽带5G天线设计

杨宇飞, 苏成悦, 李红涛, 吴艳杰, 麦伟图   

  1. 广东工业大学 物理与光电工程学院, 广东 广州 510006
  • 收稿日期:2022-01-17 出版日期:2023-05-25 发布日期:2023-06-08
  • 通信作者: 李红涛(1977-),男,讲师,硕士,主要研究方向为无线通信器件和天线,E-mail:lihongtao@gdut.edu.cn
  • 作者简介:杨宇飞(1996-),男,硕士研究生,主要研究方向为天线
  • 基金资助:
    广东省科技计划项目(2017A020208063);广州市科技计划项目(201804010384)

Design of Miniaturized Cavity Wideband 5G Antenna

Yang Yu-fei, Su Cheng-yue, Li Hong-tao, Wu Yan-jie, Mai Wei-tu   

  1. School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2022-01-17 Online:2023-05-25 Published:2023-06-08

摘要: 为满足第5代移动通信技术越来越高的性能需求,设计了一种基于基片集成波导(Substrate Integrated Waveguide,SIW)谐振腔的高增益大带宽的可重构天线。通过矩形贴片和谐振腔的耦合,并在主单元两侧布置寄生单元,使天线的回波损耗S11≤-10 dB的工作带宽达到10.7%(3.36~3.74 GHz)。工作区间内最大增益达到7.78 dBi。与其他同类天线产品相比,该天线可以减少使用2/3的移相器,并且其使用FR-4材料,具有较大的成本优势。

关键词: 宽带天线, 贴片天线, 可重构, 低成本

Abstract: In order to meet the high-speed working requirements of the fifth-generation mobile communication, a high gain antenna for 5G millimeter wave based on SIW is proposed. Through the coupling between the rectangular patch and the resonant cavity, and arranging parasitic units on both sides of the main unit, the working bandwidth of the antenna (S11≤−10 dB) reaches 10.7% (3.36~3.74 GHz) . The maximum gain in the working range reaches 7.78 dBi. Compared with other similar antenna, the proposed antenna can reduce 2/3 of the phase shifter and it uses Fr-4 material,which is of greater cost advantage.

Key words: broadband antenna, patch antenna, reconfigurable, low cost

中图分类号: 

  • TN828.6
[1] NIEHENKE E C, PUCEL R A, BAHL I J. Microwave and millimeter-wave integrated circuits [J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 846-857.
[2] LOCKIE D, PECK D. High-data-rate millimeter-wave radios [J]. IEEE Microwave Magazine, 2009, 10(5): 75-83.
[3] KAUR S, KUMAR N, DUBEY S. Investigation of adaptive beam-forming algorithms for smart antennas system[C]// IOP Conference Series: Materials Science and Engineering. Chandigarh, India: IOP Publishing, 2021, 1033(1) : 012015.
[4] HAYASHI Y, SAKAKIBARA K, NANJO M, et al. Millimeter-wave microstrip comb-line antenna using reflection-canceling slit structure [J]. IEEE Transactions on Antennas and Propagation, 2010, 59(2): 398-406.
[5] GAO J, LI K, HARADA H. Wideband stacked microstrip patch antenna on thin PTFE substrate for millimeter-wave personal area network (mmWPAN) [C]//2010 IEEE Antennas and Propagation Society International Symposium. Toronto: IEEE, 2010: 1-4.
[6] OHIRA M, MIURA A, UEBA M. 60-GHz wideband substrate-integrated wave guide slot array using closely spaced elements for planar multisector antenna [J]. IEEE Transactions on Antennas and Propagation, 2009, 58(3): 993-998.
[7] ZHAI G H, HONG W, WU K, et al. Wideband substrate integrated printed log-periodic dipole array antenna [J]. IET Microwaves, Antennas & Propagation, 2010, 4(7): 899-905.
[8] CHU Q X, LI X R, YE M. High-gain printed log-periodic dipole array antenna with parasitic cell for 5G communication [J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 6338-6344.
[9] LI X R, YE M, CHU Q X. Novel high gain printed log-periodic dipole antenna[C]//2016 IEEE International Symposium on Antennas and Propagation (APSURSI). Fajardo: IEEE, 2016: 1647-1648.
[10] ZHAI G, CHENG Y, YIN Q, et al. Super high gain substrate integrated clamped-mode printed log-periodic dipole array antenna [J]. IEEE Transactions on Antennas and Propagation, 2013, 61(6): 3009-3016.
[11] DU M, XU J, DONG Y, et al. LTCC SIW-vertical-fed-dipole array fed by a microstrip network with tapered microstrip-to-SIW transitions for wideband millimeter-wave applications [J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1953-1956.
[12] ABDEL-WAHAB W M, SAFAVI-NAEINI S. Wide-bandwidth 60-GHz aperture-coupled microstrip patch antennas (MPAs) fed by substrate integrated waveguide (SIW) [J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10: 1003-1005.
[13] DESLANDES D. Design equations for tapered microstrip-to-substrate integrated wave guide transitions[C]//2010 IEEE MTT-S International Microwave Symposium. Anaheim, CA, USA: IEEE, 2010: 704-707.
[14] LUO G Q, HU Z F, LIANG Y, et al. Development of low profile cavity backed crossed slot antennas for planar integration [J]. IEEE Transactions on Antennas and Propagation, 2009, 57(10): 2972-2979.
[15] YANG T Y, HONG W, ZHANG Y. Wideband millimeter-wave substrate integrated wave guide cavity-backed rectangular patch antenna [J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 205-208.
[16] ZHANG Y, CHEN Z N, QING X, et al. Wideband millimeter-wave substrate integrated wave guide slotted narrow-wall fed cavity antennas [J]. IEEE Transactions on Antennas and Propagation, 2011, 59(5): 1488-1496.
[1] 吴家锐, 崔苗, 张广驰, 王丰. 可重构智能表面辅助的非正交多址接入系统的安全通信研究[J]. 广东工业大学学报, 2022, 39(03): 49-54,69.
[2] 张超群, 陈煊邦. 紧凑型四频微带贴片天线的快速设计[J]. 广东工业大学学报, 2018, 35(05): 65-69.
[3] 莫凡, 林福民. 一种新型双频圆极化卫星导航天线的设计[J]. 广东工业大学学报, 2018, 35(02): 86-94.
[4] 李庚禄, 林福民, 张华福. 表面开十字形辐射槽的新型GNSS贴片天线的研究和应用[J]. 广东工业大学学报, 2014, 31(2): 90-94.
[5] 邢欣; 张梅; . 具覆盖层微带贴片天线的时域有限差分法分析[J]. 广东工业大学学报, 2001, 18(3): 40-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!