广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (03): 18-28.doi: 10.12052/gdutxb.230118

• 材料科学与技术 • 上一篇    下一篇

钒基硫化物-MXene异质催化剂的制备及锂硫电池催化机理对比研究

王心英, 陈丽, 张嘉城, 玉耀江, 王译, 李运勇   

  1. 广东工业大学 材料与能源学院, 广东 广州 510006
  • 收稿日期:2023-08-29 出版日期:2024-05-25 发布日期:2024-06-14
  • 通信作者: 李运勇(1985-),男,教授,博士生导师,主要研究方向为新型二维储能电池材料,E-mail:yyli@gdut.edu.cn
  • 作者简介:王心英(1996-),男,博士研究生,主要研究方向为锂硫电池正极材料及电催化与电池DFT理论计算,E-mail:2459305981@qq.com
  • 基金资助:
    国家自然科学基金资助面上项目 (51972066);广东省自然科学基金资助面上项目 (2021A1515011718)

Preparation of Vanadium-based Sulfide-MXene Hetero-Catalysts and Comparative Study of Catalytic Mechanism of Lithium-sulfur Batteries

Wang Xin-ying, Chen Li, Zhang Jia-cheng, Yu Yao-jiang, Wang Yi, Li Yun-yong   

  1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2023-08-29 Online:2024-05-25 Published:2024-06-14

摘要: 锂硫电池因其高的理论比容量与能量密度而被视为最具前景的储能电池之一,但锂硫电池中活性物质硫及其放电产物Li2S的低导电性、充放电过程产生的中间产物的穿梭效应、缓慢的硫氧化还原动力学等问题造成了严重的容量衰减,限制了其实际应用。本文通过一步水热法合成3种不同的钒基硫化物@MXene异质结构催化剂,并将其应用于锂硫电池正极宿主。结果表明相比于VS4@MXene 和V5S8@MXene,VS2@MXene具有更大的比表面积与电化学活性面积,为锂硫电池提供了更多的活性位点,从而提高电化学反应动力学。本文实验与密度泛函理论 (Density Functional Theory, DFT)计算结果表明, VS2@MXene具有更强的多硫化物吸附能力与电子导电性,有效地缓解了多硫化物的穿梭效应并提高了硫的利用率。以S/VS2@MXene为正极的锂硫电池,在1 C的电流密度下实现了815.4 mAh·g-1的首圈放电比容量, 并在400圈循环后, 仍然能保持在645.4 mAh·g-1的可逆比容量。本文为锂硫电池中钒基硫化物正极催化材料的选择提供了一定的思路。

关键词: 锂硫电池, 钒基硫化物, 催化转化, 异质结构

Abstract: Because of high theoretical specific capacity and energy density, lithium-sulfur batteries (LSBs) are regarded as one of the most promising energy storage batteries. However, the low conductivity of the active sulfur and the Li2S discharge product, the shuttle effect of intermediate products produced by the charging and discharging process, and serious capacity degradation caused by the slow sulfur redox kinetics, limits the practical application of LSB. Herein, three different vanadium sulfide@MXene hetero-structure catalysts were synthesized by one-step hydrothermal method and applied to the cathode host in LSBs. Compared with VS4@MXene and V5S8@MXene, VS2@MXene has the largest specific surface area and electrochemical active surface area, which provides more active sites in LSBs, thereby improving the electrochemical reaction kinetics. Meanwhile, the experimental and Density Functional Theory(DFT) theoretical calculation results show that the VS2@MXene has the strongest polysulfide adsorption ability and electronic conductivity, which effectively alleviates the shuttle effect of polysulfides and improves the utilization of sulfur. LSBs with S/VS2@MXene as the cathode achieve an initial discharge specific capacity of 815.4 mAh·g-1 and still maintain a reversible specific capacity of 645.4 mAh·g-1 after 400 cycles at 1 C. This research provides some insights for the selection of vanadium-based sulfide as the catalytic materials and hosts in lithium-sulfur batteries.

Key words: lithium-sulfur batteries, vanadium-based sulfide, catalytic conversion, heterogeneous structure

中图分类号: 

  • TB383.2
[1] SONG X Q, TIAN D, QIU Y, et al. Accelerating sulfur redox reactions by topological insulator Bi2Te3 for high-performance Li-S batteries [J]. Advanced Functional Materials, 2022, 32(9): 2109413.
[2] PANG Q, LIANG X, KWOK C Y, et al. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes [J]. Nature Energy, 2016, 1(9): 16132.
[3] PENG H J, HUANG J Q, CHENG X B, et al. Review on high-loading and high-energy lithium-sulfur batteries [J]. Advanced Energy Materials, 2017, 7(24): 1700260.
[4] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: a battery of choices [J]. Science, 2011, 334(6058): 928.
[5] WANG W, HUAI L Y, WU S Y, et al. Ultrahigh-volumetric-energy-density lithium-sulfur batteries with lean electrolyte enabled by cobalt-doped MoSe2/Ti3C2T x MXene bifunctional catalyst [J]. ACS Nano, 2021, 15(7): 11619-11633.
[6] BHARGAV A, HE J R, GUPTA A, et al. Lithium-sulfur batteries: attaining the critical metrics [J]. Joule, 2020, 4(2): 285.
[7] LIU Y P, MA S Y, LIU L F, et al. Nitrogen doping improves the immobilization and catalytic effects of Co9S8 in Li-S batteries [J]. Advanced Functional Materials, 2020, 30(32): 2002462.
[8] YAN Y, ZHANG P, QU Z H, et al. Carbon/sulfur aerogel with adequate mesoporous channels as robust polysulfide confinement matrix for highly stable lithium-sulfur battery [J]. Nano Letters, 2020, 20(10): 7662-7669.
[9] ZHOU L, DANILOV D L, EICHEL R, et al. Host materials anchoring polysulfides in Li-S batteries reviewed [J]. Advanced Energy Materials, 2021, 11(15): 2001304.
[10] LI G X, SUN J h, HOU W P, et al. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries [J]. Nature Communications, 2016, 7(1): 10601.
[11] ZHANG M, CHEN W, XUE L X, et al. Adsorption-catalysis design in the lithium-sulfur battery [J]. Advanced Energy Materials, 2020, 10(2): 1903008.
[12] SHAN J W, WANG W, ZHANG B, et al. Unraveling the atomic-level manipulation mechanism of Li2S redox kinetics via electron-donor doping for designing high-volumetric-energy-density, lean-electrolyte lithium-sulfur batteries [J]. Advance Science, 2022, 9(33): 2204192.
[13] CHEN Y, WANG T Y, TIAN H J, et al. Advances in lithium-sulfur batteries: from academic research to commercial viability [J]. Advanced Materials, 2021, 33(29): 2003666.
[14] ZHOU W L, WANG X Y, SHAN J W, et al. Engineering hollow core-shell hetero-structure box to induce interfacial charge modulation for promoting bidirectional sulfur conversion in lithium-sulfur batteries [J]. Journal of Energy Chemistry, 2023, 80(5): 128-139.
[15] CHEN L, YUE L G, WANG X Y, et al. Synergistically accelerating adsorption-electrocatalysis of sulfur species via interfacial built-in electric field of SnS2-MXene mott-schottky heterojunction in Li-S batteries [J]. Small, 2023, 19(15): 2206462.
[16] LI Y P, LEI D, JIANG T Y, et al. P-doped Co9S8 nanoparticles embedded on 3D spongy carbon-sheets as electrochemical catalyst for lithium-sulfur batteries [J]. Chemical Engineering Journal, 2021, 426(52): 131798.
[17] WANG W, WANG X Y, CHEN L, et al. Conductive metal-metal phase and built-in electric field of 1T-VSe2-MXene hetero-structure to accelerate dual-directional sulfur conversion for high-performance Li-S batteries [J]. Chemical Engineering Journal, 2023, 461: 142100.
[18] ZHENG J Q, GUAN C H, LI H G, et al. VC@NCNTs: Bidirectional catalyst for fast charging lithium-sulfur batteries [J]. Chemical Engineering Journal, 2022, 442(1): 135940.
[19] LI Y J, WANG W Y, ZHANG B, et al. Manipulating redox kinetics of sulfur species using mott-schottky electrocatalysts for advanced lithium-sulfur batteries [J]. Nano Letters, 2021, 21(15): 6656-6663.
[20] LU D Z, WANG X Y, HU Y J, et al. Expediting stepwise sulfur conversion via spontaneous built-in electric field and binary sulfiphilic effect of conductive NbB2-MXene heterostructure in lithium-sulfur batteries [J]. Advanced Functional Materials, 2023, 33(15): 2212689.
[21] WANG W, WANG X Y, SHAN J W, et al. Atomic-level design rules of metal-cation-doped catalysts: manipulating electron affinity/ionic radius of doped cations for accelerating sulfur redox kinetics in Li-S batteries [J]. Energy and Environmental Science, 2023, 16(6): 2669-2683.
[22] 周俊粮, 赵振新, 武庭毅, 等. 多功能磷化铁碳布(FeP/CC) 中间层高效催化多硫化物实现锂硫电池的高容量与高稳定性[J]. 化学学报, 2023, 81(4): 351-358.
ZHOU J L, ZHAO Z X, WU T Y, et al. Efficient catalytic conversion of polysulfides in multifunctional FeP/Carbon cloth interlayer for high capacity and stability of lithium-sulfur batteries [J]. Acta Chimica Sinica, 2023, 81(4): 351-358.
[23] SHI N X, XI J, LIU J, et al. Dual-functional NbN ultrafine nanocrystals enabling kinetically boosted lithium-sulfur batteries [J]. Advanced Functional Materials, 2022, 32(17): 2111586.
[24] ZHANG B, SHAN J W, WANG X Y, et al. Ru/Rh cation doping and oxygen-vacancy engineering of FeOOH nanoarrays@Ti3C2T x MXene heterojunction for highly efficient and stable electrocatalytic oxygen evolution [J]. Small, 2022, 18(25): 2200173.
[25] VOIRY D, CHHOWALLA M, GOGOTS Y, et al. Best practices for reporting electrocatalytic performance of nanomaterials [J]. ACS Nano, 2018, 12(10): 9635-9638.
[26] WU S Y, WANG W, SHAN J W, et al. Conductive 1T-VS2-MXene heterostructured bidirectional electrocatalyst enabling compact Li-S batteries with high volumetric and areal capacity [J]. Energy Storage Materials, 2022, 49: 153-163.
[1] 陈超, 雷源, 林展, 张山青. 单原子催化剂在锂硫电池中的应用[J]. 广东工业大学学报, 2023, 40(06): 62-74.
[2] 翁竟洽, 张琪, 黄少铭. 金属有机框架材料化学微环境调控及在锂硫电池中的应用[J]. 广东工业大学学报, 2023, 40(06): 75-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!