广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (03): 29-35.doi: 10.12052/gdutxb.230116

• 材料科学与技术 • 上一篇    下一篇

SnSe2@C储钠负极材料的合成及电化学性能研究

钟家锐, 林琳, 郑程   

  1. 广东工业大学 材料与能源学院, 广东 广州 510006
  • 收稿日期:2023-08-28 出版日期:2024-05-25 发布日期:2024-06-14
  • 通信作者: 郑程(1985-),女,副教授,博士研究生,主要研究方向为钠离子电池,E-mail:zhengcheng@gdut.edu.cn
  • 作者简介:钟家锐(1998-),男,硕士研究生,主要研究方向为钠离子电池电极材料制备,E-mail:2769094782@qq.com
  • 基金资助:
    国家自然科学基金资助面上项目(52372184)

Synthesis and Electrochemical Research of Sodium Storage Anode SnSe2@C

Zhong Jia-rui, Lin Lin, Zheng Cheng   

  1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2023-08-28 Online:2024-05-25 Published:2024-06-14

摘要: 二硒化锡(SnSe2)具有高理论比容量、原料广泛、成本低廉等优点,是一种十分有前途的钠离子电池负极材料,但同时在实际充放电过程中也受限于体积膨胀导致的结构破坏问题。鉴于此,本文通过高温煅烧的方法成功合成了碳包覆的二硒化锡(SnSe2@C)。碳包覆提高了二硒化锡材料作为钠离子电池负极的导电性和稳定性,使得SnSe2@C具有优异的高比容量(在1.0 A·g-1下,比容量为549.0 mAh·g-1)和倍率性能(在5.0 A·g-1下,比容量为427.7 mAh·g-1)。

关键词: 二硒化锡, 纳米材料, 钠离子电池, 负极材料, 电化学

Abstract: Tin selenide (SnSe2) is a very promising negative electrode material for sodium ion batteries, which has advantages such as high theoretical specific capacity, wide range of raw materials, and low cost. However, it is also limited by the structural damage caused by volume expansion during charging and discharging processes. A research is conducted on the successful synthesis of carbon coated tin selenide (SnSe2@C) through high-temperature annealing. Carbon coating improves the conductivity and stability of the material as sodium-ion battery anode, making SnSe2@C has high specific capacity (549.0 mAh·g-1 at 1.0 A·g-1) and excellent rate performance (427.7 mAh·g-1 at 5.0 A·g-1).

Key words: SnSe2, nano material, sodium-ion batteries, anode, electrochemistry

中图分类号: 

  • TM912.5
[1] ANIL S, ANDY A M, MYO M H, et al. Evolution of energy mix in emerging countries: modern renewable energy, traditional renewable energy, and non-renewable energy [J]. Renewable Energy, 2022, 199: 419-432.
[2] 李新喜, 袁晓娇, 张国庆, 等. 锂离子电池硅/石墨复合负极材料的制备及性能研究[J]. 广东工业大学学报, 2014, 31(2): 27-31.
LI X X, YUAN X J, ZHANG G Q, et al. Preparation and properties of silicon/graphite composites as anode materials for lithium batteries [J]. Journal of Guangdong University of Technology, 2014, 31(2): 27-31.
[3] 李越珠, 黄兴文, 廖松义, 等. 锂离子电池高镍三元正极材料LiNi0.8Co0.1Mn0.1O2研究进展[J]. 广东工业大学学报, 2021, 38(5): 68-74.
LI Y Z, HUANG X W, LIAO S Y, et al. Research progress of high nickel ternary cathode material LiNi0.8Co0.1Mn0.1O2 for lithium-ion batteries [J]. Journal of Guangdong University of Technology, 2021, 38(5): 68-74.
[4] HAGIWARA R, MATSUMOTO K, HWANG J, et al. Sodium ion batteries using ionic liquids as electrolytes [J]. Chemical Record, 2018, 19: 758-770.
[5] CHAWLA N, SAFA M. Sodium batteries: a review on sodium-sulfur and sodium-air batteries [J]. Electronics, 2019, 8(10): 1201.
[6] YANG X, ROGACH A L. Anodes and sodium-free cathodes in sodium ion batteries [J]. Advanced Energy Materials, 2020(22): 10.
[7] ZENG J J, WANG T, GU X R, et al. Nickel-templated carbon foam anodes for sodium-ion batteries [J]. Flat Chem, 2023, 40: 100508.
[8] AN B, MA Y, ZHANG G, et al. Controlled synthesis of few-layer SnSe2 by chemical vapor deposition [J]. RSC Advances, 2020, 10: 42157-42163.
[9] LIU Y, XU Y, HAN Y, et al. Facile synthesis of SnSe2 nanoparticles supported on graphite nanosheets for improved sodium storage and hydrogen evolution [J]. Journal of Power Sources, 2019, 436: 226860.
[10] 王昱官, 王伟. 二硒化锡纳米片的制备及其储钠行为研究[J]. 低碳化学与化工, 2023, 48(6) : 1-7.
WANG Y G, WANG W. Study on preparation of tindiselenide nanosheets and their sodium storage behaviors [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(6) : 1-7.
[11] ZHANG F, XIA C, ZHU J, et al. SnSe2 2D anodes for advanced sodium ion batteries [J]. Advanced Energy Materials, 2016, 6: 1601188.
[12] CHEN H, MU Z J, XIA Z H, et al. SnSe2 nanocrystals coupled with hierarchical porous carbon microspheres for long-life sodium ion battery anode [J]. Science China Materials, 2019, 63(4): 483-491.
[13] SHAJI N, SANTHOSHKUMAR P, KANG H S, et al. Tin selenide/N-doped carbon composite as a conversion and alloying type anode for sodium-ion batteries [J]. Journal of Alloys and Compounds, 2020, 834: 154304.
[14] XI G, JIAO X, HU X. N-doped carbon-confined SnSe2 nanoparticles as high-performance anode for lithium ion batteries [J]. Ionics, 2023, 29: 119-128.
[15] YAO W, CAI C, XIANG J, et al. SnSe2 encapsuled in N-doped carbon nanofibers as self-supporting anode for lithium-ion storage [J]. Journal of Electronic Materials, 2022, 51(12): 6654-6662.
[16] BAI J, WU H, WANG S, et al. Synthesis of CoSe2-SnSe2 nanocube-coated nitrogen-doped carbon(NC) as anode for lithium and sodium ion batteries [J]. Applied Surface Science, 2019, 488: 512-521.
[17] WU X, YANG Z, XU L, et al. SnSe2 Consecutive hybrid mechanism boosting Na+ storage performance of dual-confined SnSe2 in N, Se-doping double-walled hollow carbon spheres [J]. Journal of Energy Chemistry, 2022, 74: 8-17.
[1] 欧永振, 邱瑞铭, 雷励斌. 基于质子导体固体氧化物燃料电池制备乙烯的电化学模型研究[J]. 广东工业大学学报, 2023, 40(02): 82-87.
[2] 张江云, 张国庆, 黄启秋, 王烨. 基于18650型磷酸铁锂动力电芯的产热和电化学行为分析[J]. 广东工业大学学报, 2018, 35(04): 94-99.
[3] 李新喜, 袁晓娇, 张国庆, 张新河, 张磊. 锂离子电池硅/石墨复合负极材料的制备及性能研究[J]. 广东工业大学学报, 2014, 31(2): 27-31.
[4] 梁其锋, 柯秀芳, 舒畅, 李小婷, 马赟. TP317、HAL77-2在造纸中水腐蚀性能研究[J]. 广东工业大学学报, 2014, 31(1): 131-135.
[5] 裴磊; 易双萍; 何叶; 陈其猛; . 合金粉和注液量对镍氢电池性能的影响[J]. 广东工业大学学报, 2008, 25(4): 21-23.
[6] 廖文波; 潘湛昌; 叶镜泉; 林良盛; 肖楚民; 张环华; . 涂层电极电化学制备二氧化铈超细粉体[J]. 广东工业大学学报, 2007, 24(2): 8-10.
[7] 许怡赦; 陈国鼎; 周金运; . 电化学处理对Π共轭聚合物阳极特性的改善[J]. 广东工业大学学报, 2004, 21(3): 8-10.
[8] 李秀珍; 黄柳书; 潘湛昌; 黄惠民; . 电化学法合成山梨酸前体乙酰氧基己烯酸的量子化学研究[J]. 广东工业大学学报, 2002, 19(2): 60-63.
[9] 温立哲; 余忠民; 黄慧民; 周立清; 邓淑华; . 纳米氧化锆的制备及其干燥技术[J]. 广东工业大学学报, 2002, 19(1): 63-69.
[10] 谢光炎; 邓旭忠; 肖锦; . 难降解有机物对硝基苯酚的电化学氧化工艺研究[J]. 广东工业大学学报, 2001, 18(4): 81-85.
[11] 张环华; 张克立; 秦子斌; . 单硝基四苯基卟啉合钴(Ⅱ)的电化学性质[J]. 广东工业大学学报, 1999, 16(3): 95-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!