广东工业大学学报 ›› 2025, Vol. 42 ›› Issue (1): 114-125.doi: 10.12052/gdutxb.240047

• 综合研究 • 上一篇    

信息不对称下的智能网联汽车公平服务缓存与任务卸载算法

叶鹏飞, 陈龙, 吴嘉鑫, 武继刚   

  1. 广东工业大学 计算机学院, 广东 广州 510006
  • 收稿日期:2024-04-03 发布日期:2025-01-14
  • 通信作者: 陈龙(1988–),男,副教授,博士,主要研究方向为移动云计算、移动边缘计算等,E-mail:ustchenlong@gdut.edu.cn
  • 作者简介:叶鹏飞(1998–),男,硕士研究生,主要研究方向为移动边缘计算,E-mail:pengfroc@qq.com
  • 基金资助:
    广东省自然科学基金资助面上项目(2022A1515010895)

Service Fairness Guarantee Algorithms for Service Caching and Task Offloading of Intelligent and Connected Vehicles Under Information Asymmetry

Ye Pengfei, Chen Long, Wu Jiaxin, Wu Jigang   

  1. School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2024-04-03 Published:2025-01-14

摘要: 在延迟敏感任务存在的车联网中,车到车雾计算可有效缓解路边单元的计算任务过载。现有研究往往假设路边单元可获取网络中所有车辆全局算力信息,且假设提供服务车辆能够自主为服务请求车辆提供计算,然而其忽视了算法大规模实际部署时获取全局算力信息需要高昂的控制开销以及车辆的自私性。为此,针对车联网负载卸载中的自私性、信息不对称性和服务公平性问题,建立面向车辆雾计算的服务缓存与任务卸载整数数学线性规划模型,谋求系统最小服务完成率最大。通过设计基于合同理论的高效轻量级激励机制以激励车辆提供雾计算资源,且路边单元无需获取全局车辆算力信息,从而更贴近实际运行环境。仿真实验结果表明,提出的基于合同的舍入算法(Contract-based Rounding Algorithm, CRA)与基准算法相比,最小服务完成率平均提升73.16%和48.72%,吞吐量降低平均不超过3.39%和14.96%。

关键词: 自私性, 合同论, 车辆雾计算, 公平性, 服务推理

Abstract: For delay sensitive tasks in vehicular ad-hoc networks, vehicle to vehicle fog computing can effectively alleviate the heavy burden of computing tasks on roadside units. Existing studies generally assume that roadside units can obtain the global computing capability information of all vehicles in the network, and service vehicles can autonomously provide computation for service requesting vehicles. However, the high control cost to obtain global computing power information and vehicle selfishness have been overlooked. To addressthe vehicle selfishness, information asymmetry and service fairness problem in burden unloading of vehicle fog computing, we propose a service caching and task offloading integer linear programming model, aiming to maximize the minimum system’s service completion rate. By designing an efficient and lightweight incentive mechanism based on contract theory to incentivize vehicles to provide fog computing resources, roadside units do not need to obtain the global vehicle computing capability information, so as to be closer to the real runtime environment. Extensive simulation results demonstrate that the proposed CRA algorithmimproves the minimum service completion rate by approximately 73.16% and 48.72% over the benchmark algorithms, while the decrease in average total throughputs do not exceed 3.39% and 14.96%.

Key words: selfishness, contract theory, vehicle fog computing, fairness, service inference

中图分类号: 

  • TN929.5
[1] SHAO J, MAO Y, ZHANG J. Task-oriented communication for multidevice cooperative edge inference[J]. IEEE Transactions on Wireless Communications, 2022, 22(1): 73-87.
[2] 庞源, 武继刚, 陈龙, 等. 边缘计算中多设备多任务的能耗均衡优化算法[J]. 计算机科学与探索, 2022, 16(2): 480-488.
PANG Y, WU J G, CHEN L, et al. Energy balancing for multiple devices with multiple tasks in mobile edge computing[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 480-488.
[3] MAO Y, YOU C, ZHANG J, et al. A survey on mobile edge computing: the communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322-2358.
[4] XIA X, CHEN F, HE Q, et al. Data, user and power allocations for caching in multi-access edge computing[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 33(5): 1144-1155.
[5] FU F, KANG Y, ZHANG Z, et al. Soft actor-critic DRL for live transcoding and streaming in vehicular fog-computing-enabled IoV[J]. IEEE Internet of Things Journal, 2020, 8(3): 1308-1321.
[6] HE X, WANG S, WANG X, et al. Age-based scheduling for monitoring and control applications in mobile edge computing systems [C]//IEEE International Conference on Computer Communications. London: IEEE, 2022: 1009-1018.
[7] 吴亚兰. 车联网中的任务迁移算法研究 [D]. 广州: 广东工业大学, 2021.
[8] LYU P, XU W, NIE J, et al. Edge Computing task offloading for environmental perception of autonomous vehicles in 6G networks[J]. IEEE Transactions on Network Science and Engineering, 2022, 10(3): 1228-1245.
[9] YAO M, CHEN L, WU Y, et al. Loading cost-aware model caching and request routing in edge-enabled wireless sensor networks[J]. The Computer Journal, 2023, 66(10): 2409-2425.
[10] LI J, LIANG W, LI Y, et al. Throughput maximization of delay-aware DNN inference in edge computing by exploring DNN model partitioning and inference parallelism[J]. IEEE Transactions on Mobile Computing, 2021, 22(5): 3017-3030.
[11] BAI Z, LIN Y, CAO Y, et al. Delay-aware cooperative task offloading for multi-UAV enabled edge-cloud computing[J]. IEEE Transactions on Mobile Computing, 2022, 23(2): 1034-1049.
[12] ZHAO J, SUN X, LI Q, et al. Edge caching and computation management for real-time internet of vehicles: an online and distributed approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(4): 2183-2197.
[13] XUE Z, LIU C, LIAO C, et al. Joint service caching and computation offloading scheme based on deep reinforcement learning in vehicular edge computing systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5): 6709-6722.
[14] CHEN L, YAO M, WU Y, et al. EECDN: energy-efficient cooperative DNN edge inference in wireless sensor networks[J]. ACM Transactions on Internet Technology, 2022, 22(4): 1-30.
[15] FAN W, HAN J, SU Y, et al. Joint task offloading and service caching for multi-access edge computing in WiFi-cellular heterogeneous networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(11): 9653-9667.
[16] SHEN Q, HU B J, XIA E. Dependency-aware task offloading and service caching in vehicular edge computing[J]. IEEE Transactions on Vehicular Technology, 2022, 71(12): 13182-13197.
[17] ZHOU Z, LIU P, FENG J, et al. Computation resource allocation and task assignment optimization in vehicular fog computing: a contract-matching approach[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3113-3125.
[18] ZHOU J, ZHANG X. Fairness-aware task offloading and resource allocation in cooperative mobile-edge computing[J]. IEEE Internet of Things Journal, 2021, 9(5): 3812-3824.
[19] CHEN L, WU J, ZHANG J, et al. Dependency-aware computation offloading for mobile edge computing with edge-cloud cooperation[J]. IEEE Transactions on Cloud Computing, 2020, 10(4): 2451-2468.
[20] 王丰, 李宇龙, 林志飞, 等。基于计算吞吐量最大化的能量采集边缘计算系统在线资源优化配置 [J]. 广东工业大学学报, 2022, 39(4): 17-23.
WANG F, LI Y L, LIN Z F, et al. Online resource allocation design for computation capacity maximization in energy harvesting mobile edge computing systems [J]. Journal of Guangdong University of Technology, 2022, 39(4): 17-23.
[21] 吴嘉鑫, 孙一飞, 吴亚兰, 等. 面向安全传输的低能耗无人机轨迹优化算法[J]. 计算机工程, 2024, 50(2): 59-67.
WU J X, SUN Y F, WU Y L, et al. Low energy consumption UAV trajectory optimization algorithm for secure transmission[J]. Computer Engineering, 2024, 50(2): 59-67.
[22] LI F, YAO H, DU J, et al. Auction design for edge computation offloading in SDN-based ultra dense networks[J]. IEEE Transactions on Mobile Computing, 2020, 21(5): 1580-1595.
[23] LEE J, KIM D, NIYATO D. Market analysis of distributed learning resource management for Internet of things: a game-theoretic approach[J]. IEEE Internet of Things Journal, 2020, 7(9): 8430-8439.
[24] NGUYEN D, LB L, BHARGAVA V. Price-based resource allocation for edge computing: a market equilibrium approach[J]. IEEE Transactions on Cloud Computing, 2018, 9(1): 302-317.
[25] KIANI A, ANSARI N. Toward hierarchical mobile edge computing: an auction-based profit maximization approach[J]. IEEE Internet of Things Journal, 2017, 4(6): 2082-2091.
[26] YANG S, LI F, TRAJANOVSKI S, et al. Delay-aware virtual network function placement and routing in edge clouds[J]. IEEE Transactions on Mobile Computing, 2019, 20(2): 445-459.
[27] XU H, YU Z, QIAN C, et al. Minimizing flow statistics collection cost of SDN using wildcard requests [C]//IEEE International Conference on Computer Communications. Atlanta: IEEE, 2017: 1-9.
[28] GUO S, DAI Y, QIU X, et al. Blockchain meets edge computing: stackelberg game and double auction based task offloading for mobile blockchain[J]. IEEE Transactions on Vehicular Technology, 2020, 69(5): 5549-5561.
[29] KO H, KIM J, RYOO D, et al. A belief-based task offloading algorithm in vehicular edge computing[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(5): 5467-5476.
[30] ZHANG D, NI C, ZHANG J, et al. A novel edge computing architecture based on adaptive stratified sampling[J]. Computer Communications, 2022, 183: 121-135.
[1] 陈晓龙1, 2 , 章 云1 , 刘 治1. 一种协同改进FAST TCP公平性算法[J]. 广东工业大学学报, 2010, 27(4): 4-8.
Viewed
Full text
68
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 5 63

  From Others local
  Times 18 50
  Rate 26% 74%

Abstract
67
Just accepted Online first Issue
0 9 58
  From Others local
  Times 1 66
  Rate 1% 99%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!