广东工业大学学报 ›› 1999, Vol. 16 ›› Issue (4): 5-9.

• 综合研究 • 上一篇    下一篇

近似数据的不适定问题正则参数的后验选择

  

  1. 广东工业大学计算机科学与工程一系; 广东工业大学研究生处!广东广州510090; 暨南大学计算机系!广东广州510632;
  • 出版日期:1999-11-12 发布日期:1999-11-12
  • 基金资助:

    广东省自然科学基金!(994385) ;广东工业大学博士启动基金!(983002)

A Posteriori Parameter Choice Strategies for Nonlinear Illposed Problems with Perturbed Operators and Noisy Data

  1. (1 Dept. of Computer Science;2.Dept. of Graduate Student, GDUT, Guangzhou 510090,China; 3.Dept. of Computer Science, Jinan University, Guangzhou 510632,China)
  • Online:1999-11-12 Published:1999-11-12

摘要: 研究Hilbert 尺度上所有初始数据都是近似给定的非线性不适定问题的Tikhonov 正则化方法,给出了最优正则参数的后验选择方法,证明了正则解的几个误差估计公式 

关键词: Hilbert尺度; 非线性不适定问题; 正则参数;

[1] 凌捷.  具有双扰动数据非线性算子方程解的误差[J]. 中山大学学报(自然科学版). 1998(05)

[1] Krein SG,Petunin JI.Scalesof Banach spaces. Russian Mathematical Surveys . 1966

[2] Neubauer A.ATikhonovregularizationfornonlinearill- posed problemsin Hilbertscales. Applicable Analysis . 1992

[3] Natterer F.Error boundsfor Tikhonovregularizationin Hilbertscales. Appl.Analysis . 1984

[4] SchroterT,Tautenhahn U.Errorestimatesfor Tikhonovregularizationin Hilbertscales. NumerFunct AnalOptimiz . 1994

[5] KohlerJ,Tautenhahn U.Error bound for regularized solutions of nonlinearill- posed problems. Journal ofinverseandill- posed problems . 1995

[6] Tautenhahn U.Error estimatesforregularized solutions ofnonlinearill- posed problems. Inverse Problems . 1994

[7] Neubauer A.An a posteriori parameter choicefor Tikhonov regularization in Hilbertscalesleadingto optimalconvergence rates. SIAMJ.Numer.Anal . 1988
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!