广东工业大学学报 ›› 1999, Vol. 16 ›› Issue (4): 5-9.
摘要: 研究Hilbert 尺度上所有初始数据都是近似给定的非线性不适定问题的Tikhonov 正则化方法,给出了最优正则参数的后验选择方法,证明了正则解的几个误差估计公式
[1] 凌捷. 具有双扰动数据非线性算子方程解的误差[J]. 中山大学学报(自然科学版). 1998(05) [1] Krein SG,Petunin JI.Scalesof Banach spaces. Russian Mathematical Surveys . 1966[2] Neubauer A.ATikhonovregularizationfornonlinearill- posed problemsin Hilbertscales. Applicable Analysis . 1992[3] Natterer F.Error boundsfor Tikhonovregularizationin Hilbertscales. Appl.Analysis . 1984[4] SchroterT,Tautenhahn U.Errorestimatesfor Tikhonovregularizationin Hilbertscales. NumerFunct AnalOptimiz . 1994[5] KohlerJ,Tautenhahn U.Error bound for regularized solutions of nonlinearill- posed problems. Journal ofinverseandill- posed problems . 1995[6] Tautenhahn U.Error estimatesforregularized solutions ofnonlinearill- posed problems. Inverse Problems . 1994[7] Neubauer A.An a posteriori parameter choicefor Tikhonov regularization in Hilbertscalesleadingto optimalconvergence rates. SIAMJ.Numer.Anal . 1988 |
No related articles found! |
|