摘要: 考虑金融市场的非系统风险,在传统的CKLS模型中加入随机跳跃因素,提出了一种刻画短期利率的扩展CKLS模型.采用Euler法离散化连续过程,得到离散过程的似然函数,并采用基于马尔可夫链蒙特卡洛法估计了模型的未知参数.采用上海银行间同业拆放利率数据进行实证研究.结果表明,跳跃在所选的研究期间以较高的概率发生,马尔可夫链蒙特卡洛法在参数估计中是有效的.
[1]Merton R.Option pricing ehen underlying stock returns are discontinuous[J].Journal of Financial Economics,1976,3:125-144.[2]Brennan M,Schwartz E.Saving bonds,retractable bonds,and callable bonds[J].Journal of Financial Economies,1977.5:67-88.[3]Brennan M,Schwartz E.A continuous time approach to the pricing of bonds[J].Journal of Banking and Finance,1979,3:133-155.[4]Brennan M,Schwartz E.Analyzing convertible bonds[J].Journal of Financial and Quantitive Analysis,1980,15:907-929.[5]Vasicek O.An equilibrium characterization of the term structure[J].Journal of Financial Economics,1977,5:177-188.[6]Cox J C,Ingersoll J E,Ross S A.A theory ofthe term strueture ofinterest rates[J].Econometrica,1985,53:385-407.[7]Chan K C,Karolyi G A,Longstaf F,et al.The volatility of short term interest rates:An empirical comparison of alternative models of the term structure of interest rates[J].Journal of Finance 47,1992:1209-1227.[8]Das S.The surprise element:Jumps in interest rates[J].Journal of Econometrics 106,2001,1943-1978.[9]Johannes M.The statistical and economic role of jumps incontinuous-time interest rates models[J].Journal of Finance,2004,227-260.[10]Kutoyants Y.Parameter Estimation for Stochastic Processes [M].Berlin:Helderman:1984.[11]Prakasa Rao B L S.Statistical Inference for Difusion Type Processes[M].London:Arnold,1999.[12]Liptser R,Shiryav A.Statistics of Random Processes:Ⅱ[M].Berlin:Applications,Springer,2001.[13]Johannes M,Poison N.MCMC Methods for ContinuousTime Financial Econometrics[M].New York:Handbook of Financial Econometrics,2006.[14]胡素华,张世英,张彤.双指数跳跃扩散模型的MCMC估计[J].系统工程学报,2006,21(2):113-118. |
No related articles found! |
|