广东工业大学学报 ›› 2010, Vol. 27 ›› Issue (4): 76-80.

• 综合研究 • 上一篇    下一篇

多目标进化算法在物流配送中心选址中的应用

  

  1. 1.广东工业大学应用数学学院,广东广州510006;2.广东工业大学图书馆,广东广州510006
  • 出版日期:2010-12-25 发布日期:2010-12-25
  • 作者简介:张金凤(1984-),女,硕士研究生,主要研究方向为进化算法

Application of Multi-objective Evolutionary Algorithm in the Location of Logistics Distribution Centers

  1. 1.Faculty of Applied Mathematics,Guangdong University of Technology,Guangzhou 5 10006,China;
    2.Library of Guangdong University of Technology,Guangzhou 510006,China
  • Online:2010-12-25 Published:2010-12-25

摘要: 传统的物流配送中心选址模型过于单一地追求物流成本的最小化,而没有考虑服务的质量与效率.本文将顾客时间满意度作为度量物流服务水平的一个标准,提出了物流配送中顾客时间满意度的计算方法,建立了以物流成本最小化和时间满意度最大化为目标的物流配送中心选址多目标优化模型.采用一种基于NSGA一Ⅱ的多目标进化算法来求解,通过选择合适的编码方法和遗传算子可以得到模型的最优解,并通过实际算例说明了模型和算法的有效性.该模型能一次得到多组有效解,从而可以为物流配送中心选址提供更加全面的决策支持.

关键词: 配送中心;物流;多目标优化;选址;进化算法

Abstract: The traditional location models only seek to minimize logistics cost without regard to the quality and efficiency of service.It sets the time to satisfy customers as a measurement of the location of logistics distribution centers,proposes the method of calculating the customer-satisfying time,and establishes the multi-objective optimization model with the goal of minimizing the logistics cost and maximizing customers’satisfaction.A multi-objective evolutionary algorithm,based on NSGA-11,was proposed to solve the problem.The optimal solutions to the model were obtained by selecting the appropriate encoding method and genetic operators.A practical example shows the validity of the model and algorithm.This model makes it possible to get several efficient solutions,thus providing a more comprehensive decision support for decision-makers.

Key words: distribution center;logistics;multi-objective optimization;location;evolutionary algorithm

[1] 冯瑞芳,丰超.物流配送中心选址策略研究[J].科学技术与工程,2008,8(12):3366-3370.

[2] 赵冬玲,孔志周,官东.基于改进遗传算法的物流配送中心选址研究[J].统计与决策,20O8(11):153-155.

[3] 吴兵,罗荣桂,彭伟华.基于遗传算法的物流配送中心选址研究[J].武汉理工大学学报,2006,28(2):89-91.

[4] 周根贵,沈雁飞.基于时间满意度的物流配送中心选址问题研究[J].浙江工业大学学报,2008,36(4):355-358.

[5] Ding Wei,Li Yan-yan,Zhang Qiu—wen.An Improved Genetic Algorithm for Grain Distribution Centers Locations[EB/OL].[2010-05—25].http:∥ieeexplore.ieee.org/search/srchabstract.jsp?tp=&amumber=4743813&queryText% 3DAn +Improved +Genetic+Algorithm +for+ Grain + Distribution + Centers + Loc ation% 26openedRefinements% 3D % 26searchField% 3DSearch+All.

[6]Xiao Jian-mei,Wang Xi-huai,Fu yu.Improved ant colony optimization algorithm solve logistics distribution center allocation[EB/OL].[2010415—25].http://ieeexplore.ieee.org/search/srchabstract.jsp?tp &amumber=5195015&query Text% 3 Dlmproved + ant+colony + optimization + algorithm+ solve + logistics+ distribution + center+ alloc ation%26openedRefinements% 3 D % 26searchField%3DSearch+A11.

[7] Wang Ni,Lu Jye-Chyi,Kvam Pau1.Reliability modeling in spatially distributed logistics systems[J].IEEE Transactions on Reliability,2006,55(3):525-534.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!