广东工业大学学报 ›› 2011, Vol. 28 ›› Issue (1): 50-53.

• 综合研究 • 上一篇    下一篇

标量随机延迟微分方程Euler-Maruyama方法的均方稳定性分析

  

  1. 广东工业大学 应用数学学院, 广东 广州 510006
  • 出版日期:2011-12-25 发布日期:2011-12-25
  • 作者简介:王琦(1978-),男,讲师,博士研究生,主要研究方向为微分方程数值解.
  • 基金资助:

    广东省自然科学基金资助项目(9451009001002753);广东工业大学青年基金资助项目(092027)

Mean-Square Stability Analysis of EulerMaruyama Method for Scalar Stochastic Delay Differential Equations

  1. Faculty of Applied Mathematics, Guangdong University of Technology, Guangzhou 510006, China
  • Online:2011-12-25 Published:2011-12-25

摘要: 在解析解均方稳定的条件下研究带有乘性噪声的标量随机延迟微分方程EulerMaruyama方法的均方稳定性.证明了当步长满足一定限制时,数值解是均方稳定的.数值算例验证了理论结果的正确性.

关键词: 随机延迟微分方程;EulerMaruyama方法;均方稳定性

Abstract: Mean-square stability of EulerMaruyama method is studied for scalar stochastic delay differential equations with multiplicative noise under the condition of analytical meansquare stability.It is proven that the numerical solution is meansquare stable when the stepsize satisfies certain restrictions.Numerical examples verify the theoretical results.

Key words: stochastic delay differential equations; Euler-Maruyama method; mean-square stability

[1] Mao X R.Stochastic differential equations and applications[M].Second Edition.Chichester: Harwood, 2007.147-234.

[2] Zhou S B, Wang Z Y, Feng D.Stochastic functional differential equations with infinite delay[J].J Math Anal Appl, 2009(357): 416-426.

[3] Li C X, Sun J T, Sun R Y.Stability analysis of a class of stochastic differential delay equations with nonlinear impulsive effects[J].Journal of the Franklin Institute, 2010(347): 1186-1198.

[4] Cao W R, Liu M Z, Fan Z C.MSstability of the EulerMaruyama method for stochastic differential delay equations[J].Appl Math Comput, 2004(159): 127-135.

[5] Li R H, Meng H B, Dai Y H.Convergence of numerical solutions to stochastic delay differential equations with jumps[J].Appl Math Comput, 2006(172): 584-602.

[6] Liu M Z, Cao W R, Fan Z C.Convergence and stability of the semiimplicit Euler method for a linear stochastic differential delay equation[J].J Comput Appl Math, 2004(170): 255-268.

[7] Fan Z C, Liu M Z, Cao W R.Existence and uniqueness of the solutions and convergence of semiimplicit Euler methods for stochastic pantograph equations[J].J Math Anal Appl, 2007(325): 1142-1159.

[8] Zhang H M, Gan S Q, Hu L.The splitstep backward Euler method for linear stochastic delay differential equations[J].J Comput Appl Math, 2009(225): 558-568.

[9] 谭英贤, 甘四清.中立型随机比例延迟微分方程平衡半隐式Euler方法的均方收敛性[J].数学理论与应用, 2009, 29(4): 47-51.

[10] Zhao G H, Song M H, Liu M Z.Exponential stability of EulerMaruyama solutions for impulsive stochastic differential equations with delay[J].Appl Math Comput, 2010(215): 3425-3432.

[11] Mohammed S E A.Stochastic functional differential equations[M].Boston: Pitman Advanced Publishing Program, 1984.

[12] Mao X R.Exponential stability of stochastic differential equations[M].New York: Marcel Dekker, 1994.147-290.

[13] Maruyama G.Continuous Markov processes and stochastic equations[J].Rend Circolo Math Palermo, 1955(4): 48-90.

[14] 曹婉容.随机延迟微分方程几种数值方法的收敛性和稳定性[D].哈尔滨:哈尔滨工业大学博士学位论文,2004.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!