广东工业大学学报 ›› 2011, Vol. 28 ›› Issue (1): 50-53.
摘要: 在解析解均方稳定的条件下研究带有乘性噪声的标量随机延迟微分方程EulerMaruyama方法的均方稳定性.证明了当步长满足一定限制时,数值解是均方稳定的.数值算例验证了理论结果的正确性.
[1] Mao X R.Stochastic differential equations and applications[M].Second Edition.Chichester: Harwood, 2007.147-234.[2] Zhou S B, Wang Z Y, Feng D.Stochastic functional differential equations with infinite delay[J].J Math Anal Appl, 2009(357): 416-426.[3] Li C X, Sun J T, Sun R Y.Stability analysis of a class of stochastic differential delay equations with nonlinear impulsive effects[J].Journal of the Franklin Institute, 2010(347): 1186-1198.[4] Cao W R, Liu M Z, Fan Z C.MSstability of the EulerMaruyama method for stochastic differential delay equations[J].Appl Math Comput, 2004(159): 127-135.[5] Li R H, Meng H B, Dai Y H.Convergence of numerical solutions to stochastic delay differential equations with jumps[J].Appl Math Comput, 2006(172): 584-602.[6] Liu M Z, Cao W R, Fan Z C.Convergence and stability of the semiimplicit Euler method for a linear stochastic differential delay equation[J].J Comput Appl Math, 2004(170): 255-268.[7] Fan Z C, Liu M Z, Cao W R.Existence and uniqueness of the solutions and convergence of semiimplicit Euler methods for stochastic pantograph equations[J].J Math Anal Appl, 2007(325): 1142-1159.[8] Zhang H M, Gan S Q, Hu L.The splitstep backward Euler method for linear stochastic delay differential equations[J].J Comput Appl Math, 2009(225): 558-568.[9] 谭英贤, 甘四清.中立型随机比例延迟微分方程平衡半隐式Euler方法的均方收敛性[J].数学理论与应用, 2009, 29(4): 47-51.[10] Zhao G H, Song M H, Liu M Z.Exponential stability of EulerMaruyama solutions for impulsive stochastic differential equations with delay[J].Appl Math Comput, 2010(215): 3425-3432.[11] Mohammed S E A.Stochastic functional differential equations[M].Boston: Pitman Advanced Publishing Program, 1984.[12] Mao X R.Exponential stability of stochastic differential equations[M].New York: Marcel Dekker, 1994.147-290.[13] Maruyama G.Continuous Markov processes and stochastic equations[J].Rend Circolo Math Palermo, 1955(4): 48-90.[14] 曹婉容.随机延迟微分方程几种数值方法的收敛性和稳定性[D].哈尔滨:哈尔滨工业大学博士学位论文,2004. |
No related articles found! |
|