广东工业大学学报 ›› 2011, Vol. 28 ›› Issue (1): 82-85.

• 综合研究 • 上一篇    下一篇

非线性发展方程反周期解的边值问题

  

  1. 广东工业大学 应用数学学院,广东 广州 510006
  • 出版日期:2011-12-25 发布日期:2011-12-25
  • 作者简介:李玉华(1983-),男,硕士研究生,主要研究方向为非线性泛函分析.

Anti-periodic Boundary Value Problems with Nonlinear Evolution Equations

  1. Faculty of Applied Mathematics,Guangdong University of Technology,Guangzhou 510006,China
  • Online:2011-12-25 Published:2011-12-25

摘要: 在Hilbert空间中,利用非线性泛函分析中的LeraySchauder度理论,对含有极大单调映象的非线性发展方程的反周期解的边值问题进行了研究,并将其结果做了推广.

关键词: 非线性发展方程;极大单调映象;反周期解;Lera-Schauder度

Abstract: Using Leray-Schauder’s topology degree theory in a nonlinear analysis,it studies Antiperiodic boundary value problems with nonlinear evolution equations associated with maximal monotone mappings in Hilbert space,and conducts further research into the results obtained.

Key words: nonlinear evolution equation; maximal monotone mapping; antiperiodic solution; Leray-Schauder degree

[1] Okochi H.On the existence of periodic solutions to nonlinear abstract parabolic equations[J].J Math Soc,1988(40):541-553.

[2] Okochi H.On the existence of antiperiodic solutions to a nonlinear evolution equation associated with differential operators[J].J Funct Anal,1990(91):246-258.

[3] Okochi H.On the existence of antiperiodic solutions to nonlinear parabolic equations in noncylindrical domains[J].Nonlinear Anal,1990(14):771-783.

[4] Haraux A.Antiperiodic solutions of some nonlinear evolution equations[J].Manuscripta math,1989(63):479-505.

[5] Chen Yuqing.Note on Massera’s theorem on antiperiodic solution[J].Advances in Math Sci and Appl,1999(9):125-128.

[6] Chen Y Q,Cho Y J,O’Regan D.Antiperiodic solutions for evolution equations with mapping in class(S+)[J].Math Nachr,2005(278):335-362.

[7] Chen Y Q,Wang X D,Xu H X.Antiperiodic solutions for semilinear evolution equations[J].J Math Anal Appl,2002(273):627-636.

[8] Chen Y Q.Antiperiodic solutions for semilinear evolution equations[J].J Math Anal Appl,2006(315):337-348.

[9] Chen Y Q,J Nieto J,O’Regan D.Antiperiodic solutions for fully nonlinear firstorder differential equations[J].Mathematical and Computer Modeling,2007(46):1183-1190.

[10] Chen Y Q,Cho Y J,Jung J S.Antiperiodic solutions for semilinear evolution equations[J].Mathematical and Computer Modeling,2004(40):1123-1130.

[11] Liu Zhenhai.Antiperiodic solutions to nonlinear evolution equations[J].Journal of Functional Analysis,2010(258):2026-2033.

[12] Zeidler E.Nonlinear functional analysis and its applications II[M].New York:Springer,1990.

[13] Kyritsi S,Matzakos N,Papageorgiou N S.Periodic problems for strongly nonlinear secondorder differential inclusions[J].J Diff Eqns,2002(183):279-302.

[14] Barbu V.Nonlinear Semigroups and Differential Equations in Banach Spaces[M].Noordhoff:Leyden,1976.

[15] Wagner D H.Survey of measurable selection theorems[J].SIAM J Control Optim,1977(15):859-890.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!