摘要: 研究得到了一类特殊矩阵谱条件数上界的估计,与现有文献中只讨论参数α>1时这类矩阵条件数界的不同,本文补充讨论了α≤1时条件数的上界,完善了相应文献对这类特殊矩阵条件数的估计.
[1]孙继广. 矩阵扰动分析[M].北京:科学出版社,1987.[2] Stewart G W, Sun J G. Matrix Perturbation Theory[M]. Boston:Academic Press, 1990.[3] Bhatia R, Kittanen F, Li R C. Eigenvalues of symmetrizable matrices[J].BIT, 1998(38):1-11.[4] 黎稳,孙伟伟.组合扰动界:II极分解[J].中国科学,A辑数学,2007,37(6):701708.[5] Hoffman A J, Wielandt H W.The variation of the spectrum of a normal matrix[J]. Duke Math J, 1953(20):37-39.[6] Song Y Z.A note on the variation of the spectrum of an arbitary matrix[J]. Linear Algebra and its Application, 2002(342):41-46.[7] Tristan Londre, Noah H Rhee. A note on relative perturbation bounds[J]. SIAM J.Matrix Analysis and its Applications, 1999,21:357-361.[8] Song Y Z. A note on the variation of the spectrum of an arbitary matrix[J].Linear Algebra and its Application,2002,342:41-46.[9] Li Rencang. Relative perturbation theory III: more bounds on eigenvalue variation[J].Linear Algebra and its Application, 1997,266:337-345.[10] Ipsen C F. A note on absolute and relative perturbation bounds[J]. Linear Algebra and its Application,2003,358: 239-253.[11] Fang Q. A note on condition number of matrix[J].J Comput Appl Math, 2003,157:231-234. |
No related articles found! |
|