广东工业大学学报 ›› 2011, Vol. 28 ›› Issue (2): 69-70.

• 综合研究 • 上一篇    下一篇

一类特殊矩阵谱条件数的注记

  

  1. 广东工业大学 应用数学学院,广东 广州  510006
  • 出版日期:2011-06-25 发布日期:2011-06-25
  • 作者简介:陈建新(1977-),女,讲师,硕士,主要研究方向为矩阵扰动分析和系统稳定性分析.
  • 基金资助:

    广东工业大学青年基金资助项目(062059)

A Note on the Condition Number of Matrix Spectrum

  1. Faculty of Applied Mathematics, Guangdong University of Technology, Guangzhou 510006, China
  • Online:2011-06-25 Published:2011-06-25

摘要: 研究得到了一类特殊矩阵谱条件数上界的估计,与现有文献中只讨论参数α>1时这类矩阵条件数界的不同,本文补充讨论了α≤1时条件数的上界,完善了相应文献对这类特殊矩阵条件数的估计.

关键词: 谱条件数;2范数;上界

Abstract: The upper bound of a special kind of condition number of matrix spectrum is researched and estimated. The research supplements the estimation of such condition number in corresponding literature.

Key words:
spectrum condition number; 2 norms; upper bound

[1]孙继广. 矩阵扰动分析[M].北京:科学出版社,1987.

[2] Stewart G W, Sun J G. Matrix Perturbation Theory[M]. Boston:Academic Press,  1990.

[3] Bhatia R, Kittanen F, Li R C. Eigenvalues of symmetrizable matrices[J].BIT, 1998(38):1-11.

[4] 黎稳,孙伟伟.组合扰动界:II极分解[J].中国科学,A辑数学,2007,37(6):701708.

[5] Hoffman A J,  Wielandt H W.The variation of the spectrum of a normal matrix[J]. Duke Math J, 1953(20):37-39.

[6] Song Y Z.A note on the variation of the spectrum of an arbitary matrix[J]. Linear Algebra and its Application, 2002(342):41-46.

[7] Tristan Londre, Noah H Rhee. A note on relative perturbation bounds[J]. SIAM J.Matrix Analysis and its Applications, 1999,21:357-361.

[8] Song Y Z. A note on the variation of the spectrum of an arbitary matrix[J].Linear Algebra and its Application,2002,342:41-46.

[9] Li Rencang. Relative perturbation theory III: more bounds on eigenvalue variation[J].Linear Algebra and its Application, 1997,266:337-345.

[10] Ipsen C F. A note on absolute and relative perturbation bounds[J]. Linear Algebra and its Application,2003,358: 239-253.

[11] Fang Q. A note on condition number of matrix[J].J Comput Appl Math, 2003,157:231-234.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!