广东工业大学学报 ›› 2011, Vol. 28 ›› Issue (4): 22-25.

• 综合研究 • 上一篇    下一篇

共面波导激励电磁体积力的数值研究

  

  1. 南京理工大学 瞬态物理重点实验室, 江苏 南京 210094
  • 出版日期:2011-12-25 发布日期:2011-12-25
  • 作者简介:刘宗凯(1983-),男,硕士研究生,主要研究方向为电磁流体推进与控制.
  • 基金资助:

    重点实验室基金项目(KX21373)

Numerical Investigation of the Production of Electromagnetic Body Force by Coplanar Waveguide

  1. Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094,China
  • Online:2011-12-25 Published:2011-12-25

摘要: 低频微波在共面波导传输线上是以准TEM(Transverse ElectroMagnetic)模的形式传播,其横向分布的电场和磁场相互作用能够激励出沿导带方向的电磁体积力.通过有限元-棱边元法数值分析了不同频率的激励源对共面波导周围场强分布的影响,并研究了处于特定环境下的共面波导周围的电场、磁场以及电磁体积力的分布情况.结果表明,在相同介质中频率较低的微波具有更大插入损耗,并且能保持良好准TEM模的特征,且导带周围分布的横向电场和磁场相互耦合可以激励出沿导带方向的电磁体积力. 

关键词: 微波;共面波导;电场;磁场;电磁体积力

Abstract: Low frequency microwaves propagate through coplanar waveguide in the quasistatic TEM mode, and the cross section electric field and magnetic field interact to produce electromagnetic body force along the coplanar waveguide. It investigated the influence of frequency on the density fields around the coplanar waveguide. The distribution of the electric field, magnetic field and electromagnetic body force in certain conditions was also discussed. The results show that in the same boundary conditions microwaves of lower frequency can lead to larger insertion loss and keep the quality of being better quasistatic TEM mode. The electromagnetic body force along the direction of coplanar waveguide can be produced through the mutual coupling of the electric field and magnetic field.

Key words: microwave;coplanar waveguide;electric field;magnetic field;electromagnetic body force



[1] Shatrov V,Gerbetha G. Magnetohydrodynamic drag reduction and its efficiency[J]. Physics of Fluids, 2007, 19(3): 035109,1-12. 

[2] Dattarajan S, Johari H. Boundary layer separation control by lorentz force actuators[C]∥36th AIAA Fluid Dynamics Conference and Exhibit. California: American Institute of Aeronautics and Astronautics, Inc, 2006:AIAA 3887,1-16. 

[3] Weier T, Shatrov V, Gerbeth G. Magnetohydrodynamics–Historical Evolution and Trends[M]. Berlin: Springer,2007:295-312.

[4] 杨涓,苏纬仪,毛根旺,等. 外加磁场微波等离子推力器内流场数值模拟[J]. 物理学报, 2006,55(12):6494-6499.

[5] 夏广庆, 毛根旺,朱国强,等. 美国微波电热推力器的发展历史与研究现状[J].火箭推进, 2008,34(4):32-37.

[6] Simons R N. Coplanar Waveguide Circuits, Components, and Systems[M]. New York: John Wiley & Sons, Inc,2001:20-65.

[7] Weier T, Gerbeth G. Control of separated flows by time periodic Lorentz forces[J]. European Journal of Mechanics BFluids, 2004, 23:835-849. 

[8] 金建铭.电磁场有限元方法[M]. 王建国译.西安:西安电子科技大学出版社, 1998:96-187.

[9] 陈钢. 利用矢量有限元法求微波多端口网络的S参数[D]. 成都:电子科技大学物理电子学院, 2009.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!