广东工业大学学报 ›› 2012, Vol. 29 ›› Issue (1): 39-42.

• 综合研究 • 上一篇    下一篇

基于辅助种群分类的遗传算法

  

  1. 广东工业大学 应用数学学院,广东 广州 510520
  • 出版日期:2012-03-25 发布日期:2012-03-25
  • 作者简介:涂井先(1987-),男,硕士研究生,主要研究方向为智能计算.

A Genetic Algorithm Based on the Classification of the Auxiliary Group

  1. Faculty of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
  • Online:2012-03-25 Published:2012-03-25

摘要: 提出了基于辅助种群分类的遗传算法,该算法克服了辅助种群多样性不好的缺点,利用先验知识将辅助种群分为若干类,分类后辅助种群与主种群杂交更有利于后代的进化,同时也更好保证了种群的多样性.数值试验表明,改进的算法优于当前一些较好的遗传算法,并能跳出局部最优解从而求解出全局最优解.



〖HT5”H〗中图分类号: TP18〓〓〓〓〓〓文献标志码: A〓〓〓〓〓〓文章编号: 10077162(2012)01003904


关键词: 遗传算法;辅助种群;主种群;分类

Abstract:
A genetic algorithm, based on the classification of the auxiliary group, was proposed. The algorithm overcame the weakness that diversity of the auxiliary group was not perfect, and with prior knowledge it classified the auxiliary group into several subgroups. After the classification, it is more favourable for the auxiliary group and the main group to evolve. Meanwhile, the diversity of the auxiliary group is maintained. The results show that the improved algorithm is more effective than some other existing genetic algorithms. The improved algorithm avoids being trapped into the local optimum, thus deriving the global optimum.

Key words: genetic algorithm; auxiliary population; main population; classification

[1] Tu Chengyuan,Zeng Yanjun.A new genetic algorithm based upon globallyoptimal choosing and its practices[J].Engineering Science,2003,5(02):28-29.

[2] Ming Zhou,Sun Shudong.Principle of Genetic Algorithmn and Application[M].Beijing:National Defence Industry Press,1999.

[3] Chuanxin Zhao,Yimu Ji.Particle swarm optimization for 0/1 knaps problem[J].Microcomputer Develepment,2005 (10):23-25.

[4] 唐焕文,秦学志. 实用最优化方法[M]. 3版.大连:大连理工大学出版,1999.

[5] 周明, 孙树栋.遗传算法原理及其应用[M].北京:国防工业出版社,1999.

[6] 刘伟,刘海林.基于外点法的混合遗传算法求解约束优化问题[J].计算机应用,2007,27(1):238-240.

[7] Goldberg D E,Richardson J.Genetic Algorithms with Sharing for Multimodal Function Optimization[M].Hillsdale:Lawrence Erlbaum,1987.

[8] 于歆杰,王赞基.对适应值共享遗传算法的分类及评价[J].模式识别与人工智能,2001,14(1):42-47.

[9] Antonio D C,Claudio D S.On the Role of Population Size and Niche Radius in Fitness Sharing[J].IEEE Transactions on Evolutionary Computation,2004,8(6):580-592

[10]方必和,于蕾蕾.基于淘汰机制的双种群遗传算法[J].计算机技术与发展,2009,19(9):101-104.

[11] Taejin Park,Kwang R R.A DualPopulation Genetic Algorithm for Adaptive Diversity Control[J].IEEE Transactions on Evolutionary Computation,2010,14(6):580-592.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!