摘要: 提出了基于辅助种群分类的遗传算法,该算法克服了辅助种群多样性不好的缺点,利用先验知识将辅助种群分为若干类,分类后辅助种群与主种群杂交更有利于后代的进化,同时也更好保证了种群的多样性.数值试验表明,改进的算法优于当前一些较好的遗传算法,并能跳出局部最优解从而求解出全局最优解. 〖HT5”H〗中图分类号: TP18〓〓〓〓〓〓文献标志码: A〓〓〓〓〓〓文章编号: 10077162(2012)01003904
[1] Tu Chengyuan,Zeng Yanjun.A new genetic algorithm based upon globallyoptimal choosing and its practices[J].Engineering Science,2003,5(02):28-29.[2] Ming Zhou,Sun Shudong.Principle of Genetic Algorithmn and Application[M].Beijing:National Defence Industry Press,1999.[3] Chuanxin Zhao,Yimu Ji.Particle swarm optimization for 0/1 knaps problem[J].Microcomputer Develepment,2005 (10):23-25.[4] 唐焕文,秦学志. 实用最优化方法[M]. 3版.大连:大连理工大学出版,1999.[5] 周明, 孙树栋.遗传算法原理及其应用[M].北京:国防工业出版社,1999.[6] 刘伟,刘海林.基于外点法的混合遗传算法求解约束优化问题[J].计算机应用,2007,27(1):238-240.[7] Goldberg D E,Richardson J.Genetic Algorithms with Sharing for Multimodal Function Optimization[M].Hillsdale:Lawrence Erlbaum,1987.[8] 于歆杰,王赞基.对适应值共享遗传算法的分类及评价[J].模式识别与人工智能,2001,14(1):42-47.[9] Antonio D C,Claudio D S.On the Role of Population Size and Niche Radius in Fitness Sharing[J].IEEE Transactions on Evolutionary Computation,2004,8(6):580-592[10]方必和,于蕾蕾.基于淘汰机制的双种群遗传算法[J].计算机技术与发展,2009,19(9):101-104.[11] Taejin Park,Kwang R R.A DualPopulation Genetic Algorithm for Adaptive Diversity Control[J].IEEE Transactions on Evolutionary Computation,2010,14(6):580-592. |
No related articles found! |
|