广东工业大学学报 ›› 2012, Vol. 29 ›› Issue (3): 1-11.doi: 10.3969/j.issn.1007-7162.2012.03.001
• 特约综述 • 下一篇
成正东1,2,3,叶剑1,2,何鹏3,4,张海燕1,陈颖1,何立群5
Cheng Zheng-dong1,2,3, Ye Jian 1,2, He Peng3,4, Zhang Hai-yan1, Chen Ying1, He Liqun5
摘要: 回顾了微纳米碟状胶体的研究发展近况,侧重于合成、自组装和它们在软凝聚态物质及材料科学中的角色.首先讨论了各种合成碟状胶体的方法, 包括选择性表面活性剂吸附下的纳米晶体生长、受控沉淀、剥离层状结构化合物、液晶乳液形状变化等等.介绍了这些碟状胶体颗粒在液晶相的形成和悬浮液流变性质等方向的研究应用.特别要提到的是碟状颗粒〖KG-*4〗-〖KG-*4〗聚合物纳米复合材料,如尼龙黏土混合材料、αZrP环氧树脂等在先进功能材料工程中的广泛应用,以及研究人体红细胞的流动性质和形变性质对医疗研究的重大意义.
[1] Perrin J. Brownian movement and molecular reality[J]. Annales De Chimie Et De Physique,1909,18:5 114.[2] Anderson V J, Lekkerkerker H N W. Insights into phase transition kinetics from colloid science [J]. Nature, 2002, 416(6883):811815.[3] Cheng Z D, Russell W B, Chaikin P M. Controlled growth of hardsphere colloidal crystals [J]. Nature, 1999,401:893895.[4] Cheng Z D, Chaikin P M, Zhu J X, et al. Crystallization kinetics of hard spheres in microgravity in the coexistence regime: Interactions between growing crystallites[J]. Physical Review Letters, 2002, 88:015501.[5] Cheng Z D, Zhu J X, Chaikin P M, et al. Nature of the divergence in low shear viscosity of colloidal hardsphere dispersions[J]. Physical Review E, 2002, 65(4):041405. [6] Pusey P N, Van Megen W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres[J].Nature,1986, 320(6060):340342.[7] Pusey P N, van Megen W, Bartlett P, et al. Structure of crystals of hard colloidal spheres[J]. Physical review letters, 1989, 63(25):27532756.[8] De Gennes P G, Prost J. The physics of liquid crystals[J]. Reviews of Modern Physcis, 1974, 46(4):597.[9] Usuki A, Hasegawa N, Kato M, et al. Polymerclay nanocomposites[J]. Inorganic Polymeric Nanocomposites and Membranes, 2005:124.〖ZK)〗[10] 〖ZK(#〗Onsager L. The effects of shape on the interaction of colloidal particles[J]. Annals of the New York Academy of Sciences, 1949, 51(4):627659.[11] Puntes V F, Zanchet D, Erdonmez C K, et al. Synthesis of hcpCo nanodisks[J]. Journal of the American Chemical Society, 2002, 124(43):1287412880.[12] Kim, Y H, Yoon D K, Jung H T. Recent advances in the fabrication of nanotemplates from supramolecular selforganization[J]. J Mater Chem, 2009, 19(48):90919102.[13] Lee G, Cho Y S, Park S, et al. Synthesis and assembly of anisotropic nanoparticles[J]. Korean Journal of Chemical Engineering, 2011:110.[14] Saunders A E, Ghezelbash A, Smilgies D M, et al. Columnar selfassembly of colloidal nanodisks[J]. Nano letters, 2006, 6(12):29592963. [15] Sigman Jr M B, Ghezelbash A, Hanrath T, et al. Solventless synthesis of monodisperse Cu2S nanorods, nanodisks and nanoplatelets[J]. Journal of the American Chemical Society,2003,125(51):1605016057.[16] Van Der Kooij F M, Kassapidou K, Lekkerkerker H N W. Liquid crystal phase transitions in suspensions of polydisperse platelike particles[J]. Nature,2000, 406:868871.[17] Badaire S, CottinBizonne C, Joseph W, et al. Shape selectivity in the assembly of lithographically designed colloidal particles[J]. Journal of the American Chemical Society,2007, 129(1):4041.[18] Mason, T G. Osmotically driven shapedependent colloidal separations[J]. Physical Review E, 2002, 66(6):060402060402.[19] van der Kooij F M, Lekkerkerker H N W. Formation of nematic liquid crystals in suspensions of hard colloidal platelets[J]. The Journal of Physical Chemistry B, 1998, 102(40):78297832.[20] Brown A B D, Clarke S M, Rennie A R. Ordered phase of platelike particles in concentrated dispersions[J]. Langmuir, 1998, 14(11):31293132.[21] Mejia A F, He P, Luo D W, et al. Uniform discotic wax particles via electrospray emulsification[J]. Journal of Colloid and Interface Science, 2009, 334(1):2228.[22] Mejia A F, He P, Cheng Z D, et al. Surfacecontrolled shape design of discotic microparticles[J]. Soft Matter, 2010, 6(19):48854894.[23] Park M, Harrison C, Chaikin P M, et al. Block copolymer lithography: Periodic arrays of similar to 10(11) holes in 1 square centimeter[J]. Science, 1997, 276(5317):14011404.[24] Hernandez C J, Zhao K, Mason T G. PillarDeposition Particle Templating: A HighThroughput Synthetic Route for Producing LithoParticles[J]. Soft Materials, 2007, 5(1):111.[25] Hernandez C J, Mason T G. Colloidal alphabet soup: monodisperse dispersions of shapedesigned lithoparticles[J]. The Journal of Physical Chemistry C, 2007, 111(12):44774480.[26] Clearfield A, Stynes J A. The preparation of crystalline zirconium phosphate and some observations on its ion exchange behaviour[J]. Journal of Inorganic and Nuclear Chemistry, 1964, 26(1):117129.[27] Sun L, Boo W, Sun D, et al. Preparation of exfoliated {Epoxy/αZirconium} phosphate nanocomposites containing high aspect ratio nanoplatelets[J]. Chemistry of Materials,2007,19(7):17491754.[28] Hernandez Y, Nicolosi V, Lotya M, et al. Highyield production of graphene by liquidphase exfoliation of graphite[J]. Naturenanotechnology, 2008, 3:563568.[29] Gabriel J C P, Sanchez C, Davidson P. Observation of nematic liquidcrystal textures in aqueous gels of smectite clays[J]. The Journal of Physical Chemestry,1996,100(26):1113911143.[30] Sasaki T, Watanabe M, Hashizume H, et al. Macromoleculelike aspects for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it[J]. J Am Chem Soc,1996, 118(35):83298335. [31] Wen P, Itoh H, Tang W, et al. Single nanocrystals of anatasetype TiO2 prepared from layered titanate nanosheets: Formation mechanism and characterization of surface properties[J]. Langmuir,2007, 23:1178211790.[32] AdachiPagano M, Forano C, Besse J P. Delamination of layered double hydroxides by use of surfactants[J]. Chem Commun,2000, (1):9192.[33] Treacy M M J, Rice S B, Jacobson A J, et al. Electron microscopy study of delamination in dispersions of the perovskiterelated layered phases K [Ca2Nan3NbnO3n1]: evidence for singlelayer formation [J]. Chem Mat,1990, 2(3):279286. [34] Saupe G B, Waraksa C C, Kim H N, et al. Nanoscale tubules formed by exfoliation of potassium hexaniobate[J]. Chem Mat,2000, 12(6):15561562.[35] Abe R, Hara M, Kondo J N, et al. Preparation of ionexchangeable thin films of layered niobate K4Nb6O17[J]. Chem Mat, 1998, 10(6):16471651. [36] Abe R, Shinohara K, Tanaka A, et al. Preparation of porous niobium oxides by softchemical process and their photocatalytic activity[J]. Chem Mat,1997, 9(10):21792184. [37] Schaak R E, Mallouk T E. Prying apart RuddlesdenPopper phases: Exfoliation into sheets and nanotubes for assembly of perovskite thin films[J]. Chem Mat, 2000, 12(11):34273434.[38] Miyamoto N, Yamamoto H, Kaito R, et al. Formation of extraordinarily large nanosheets from K4Nb6O17 crystals[J]. Chem Commun, 2002, 20:23782379.[39] Osterloh F E. Solution selfassembly of magnetic light modulators from exfoliated perovskite and magnetite nanoparticles[J]. J Am Chem Soc,2002, 124(22):62486249.[40] Keller S W, Kim H N, Mallouk T E. Layerbylayer assembly of Intercalation compounds and heterostructures on surfaces toward molecular beaker epitaxy[J]. J Am Chem Soc,1994, 116(19):88178818. [41] Kaschak D M, Lean J T, Waraksa C C, et al. Photoinduced energy and electron transfer reactions in lamellar polyanion/polycation thin films: Toward an inorganic “leaf”[J]. J Am Chem Soc, 1999,121(14):34353445.[42] Coleman J N, Lotya M, O’Neill A, et al. Twodimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017):568571.[43] Feynman R P. There’s plenty of room at the bottomAn invitation to enter a new field of physics[J]. Engineering and Science,1960,23(5): 2236.[44] Zocher H. Spontaneous structure formation in sols; a new kind of anisotropic liquid media[J]. Anorg Allg Chem,1925, 147:91110.[45] Klug A. The tobacco mosaic virus particle: structure and assembly[J]. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences,1999, 354(1383):531535.[46] Veerman J A C,Frenkel D. Phase behavior of disklike hardcore mesogens[J]. Physical Review A,1992, 45(8):56325632.[47] Qazi S, Karlsson G, Rennie A. Selfassembled structures of disclike colloidal particles[J]. Trends in Colloid and Interface Science, XXIV,2011:6165.[48] Qazi S J S, Karlsson G, Rennie A R. Dispersions of platelike colloidal particles—Cubatic order[J]. Journal of colloid and interface science,2010,348(1):8084.[49] Tang A, Qu S, Li K, et al. Onepot synthesis and selfassembly of colloidal copper (I) sulfide nanocrystals[J]. Nanotechnology, 2010,21:285602285602.[50] Zhao K, Mason T G. Directing colloidal selfassembly through roughnesscontrolled depletion attractions[J]. Physical review letters, 2007,99(26):268301268301.[51] Ji H, Liu X, Wang X, et al. Selfassembly of disklike multiring ZnOSnO2 colloidal nanoparticles[J]. Journal of colloid and interface science,2011,356(2):412415.[52] Mejia A F, Chang Y W, Cheng Z D, et al. Aspect ratio and polydispersity dependence of isotropicnematic transition in discotic suspensions[J]. Physical Review E, 2012,85(6):061708.[53] Behabtu N, Lomeda J R, Green M J, et al. Spontaneous highconcentration dispersions and liquid crystals of graphene[J]. Nat Nanotechnol,2010,5(6):406411.[54] Kim J E, Han T H, Lee S H, et al. Graphene oxide liquid crystals[J]. Angew ChemInt Edit,2011, 50(13):30433047. [55] Dan B, Behabtu N, Martinez A, et al. Liquid crystals of aqueous, giant graphene oxide flakes[J]. Soft Matter,2011, 7(23):1115411159.[56] Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres[J]. Nature Communications, 2011,2:571.[57] Sun D, Sue H J, Cheng Z D, et al. Stable smectic phase in suspensions of polydisperse colloidal platelets with identical thickness[J]. Phys Rev E,2009, 80(4):041704.[58] Ruzicka B, Zaccarelli E, Zulian L, et al. Observation of empty liquids and equilibrium gels in a colloidal clay[J]. Nature Materials,2011,10(1):5660.[59] Langmuir I. The Role of Attractive and Repulsive Forces in the Formation of Tactoids, Thixotropic Gels, Protein Crystals and Coacervates[J]. J Chem Phys,1938, 6(12): 873. [60] Chandrasekhar S, Sadashiva B K, Suresh K A. Liquid crystal of disclike molecules[J]. Pramana, 1977, 9(5):471480.[61] Harrison C, Cheng, Z D, Sethuraman S. et al. Dynamics of pattern coarsening in a twodimensional smectic system[J]. Physical Review E, 2002,66(1):011706.[62] Alexandre M, Dubois P. Polymerlayered silicate nanocomposites: preparation, properties and uses of a new class of materials[J]. Materials Science and Engineering: R: Reports,2000, 28(1/2):163. [63] Chen B. clay nanocomposites: an overview with emphasis on interaction mechanisms[J]. British ceramic transactions,2004,103(6):241249.[64] Pinnavaia T J, Lan T, Wang Z, et al. In Clayreinforced epoxy nanocomposites: synthesis, properties, and mechanism of formation[J]. ACS Publications, 1996:250261.[65] Mirua N, Yamazoe N P, Colomban P. Proton Conductors[M]. Cambridge University Press, Cambridge, 1992, 527.[66] Yang C, Srinivasan S, Arico A S, et al. Composite nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature[J]. Electrochemical and Solid State Letters,2001,4:A31A34.[67] Cooper J A, Woodhouse K E, Chippindale A M, et al. Photoelectrochemical determination of ascorbic acid using methylene blue immobilized in αZirconium Phosphate[J].Electroanal,1999, 11:12591265.[68] Curini M, Epifano F, Marcotullio M C, et al. Preparation and deprotection of 1, 1diacetates(acylals) using zirconium sulfophenyl phosphonate as catalyst[J]. Synthetic Commun, 2002,32:355362.[69] Dutta P. Towards energy storage[J]. Nature, 1992, 358: 621621.[70] Brenner H. The Oseen resistance of a particle of arbitrary shape[J]. J Fluid Mech, 1961, 11:604610.[71] Brenner H. Coupling between the translational and rotational Brownian motions of rigid particles of arbitrary shape: II. General theory[J]. Journal of colloid and interface science, 1967, 23(3):407436. [72] Cox R G. The steady motion of a particle of arbitrary shape at small Reynolds numbers[J]. J Fluid Mech,1965,23(4):625643.[73] He P, Mejia A F, Cheng Z D, et al. Hindrance function for sedimentation and creaming of colloidal disks[J]. Physical Review E,2010,81(2):26310.[74] Happel J, Brenner H. Low Reynolds number hydrodynamics: with special applications to particulate media[M]. Springer,1983, 1.[75] Khair A S, Brady J F. Microrheology of colloidal dispersions: shape matters[J]. Journal of rheology, 2008, 52(1):165196.[76] Van der Kooij F M, Philipse A P, Dhont J K G. Sedimentation and diffusion in suspensions of sterically stabilized colloidal platelets[J]. Langmuir, 2000,16(12):53175323.[77] Van der Kooij F M, Boek E S, Philipse A P. Rheology of dilute suspensions of hard platelike colloids[J]. Journal of colloid and interface science,2001,235(2):344349.[78] Mongondry P, Tassin J F, Nicolai T. Revised state diagram of Laponite dispersions[J]. Journal of colloid and interface science, 2005,283(2):397405.[79] Merrill E W. Rheology of blood[J]. Physiol Rev, 1969,49(4):86388.[80] Chien S. Red cell deformability and its relevance to blood flow[J]. Annual review of physiology, 1987,49(1):177192.[81] Dao M, Lim C T, Suresh S. Mechanics of the human red blood cell deformed by optical tweezers[J]. Journal of the Mechanics and Physics of Solids, 2003,51(1112):22592280.[82] Drochon A. Rheology of dilute suspensions of red blood cells: experimental and theoretical approaches[J]. EPJ APPLIED PHYSICS, 2003,22(2):155162. [83] Eriksson E, Scrimgeour J, Graneli A, et al. Optical manipulation and microfluidics for studies of single cell dynamics[J]. Journal of Optics A: Pure and Applied Optics, 2007,9:S113S113. [84] Wu J D, Li Y M, Lu D, et al. Measurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers[J]. CryoLetter, 2009, 30(2):8995.[85] PuigdeMoralesMarinkovic M, Turner K T, Butler J P, et al. Viscoelasticity of the human red blood cell[J]. American Journal of PhysiologyCell Physiology, 2007,293(2):C597C605C597C605.[86] Sleep J, Wilson D, Simmons R, et al. Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study[J]. Biophysical Journal, 1999, 77(6):30853095.[87] Svoboda K, Schmidt C F, Branton D, et al. Conformation and elasticity of the isolated red blood cell membrane skeleton[J]. Biophysical journal, 1992, 63(3):784793.[88] Abkarian M, Viallat A. Vesicles and red blood cells in shear flow[J]. Soft Matter, 2008, 4(4): 653657. [89] Higgins J M, Eddington D T, Bhatia S N, et al. Sickle cell vasoocclusion and rescue in a microfluidic device[J]. Proceedings of the National Academy of Sciences, 2007, 104(51):2049620496. [90] Jggi R D, Sandoz R, Effenhauser C S. Microfluidic depletion of red blood cells from whole blood in highaspectratio microchannels[J]. Microfluidics and Nanofluidics, 2007, 3(1):4753.[91] Lincoln B, Erickson H M, Schinkinger S, et al. Deformabilitybased flow cytometry[J]. Cytometry Part A, 2004, 59(2):203209. [92] Minerick A R, Ostafin A E, Chang H C. Electrokinetic transport of red blood cells in microcapillaries[J]. Electrophoresis, 2002, 23(14):21652173. [93] Munn L L, Dupin M M. Blood cell interactions and segregation in flow[J]. Annals of biomedical engineering, 2008, 36(4): 534544.[94] Caputo K E, Lee D, King M R, et al. Adhesive dynamics simulations of the shear threshold effect for leukocytes[J]. Biophysical journal, 2007, 92(3):787797. [95] Chang K C, Tees D F J, Hammer D A. The state diagram for cell adhesion under flow: leukocyte rolling and firm adhesion[J]. Proceedings of the National Academy of Sciences, 2000, 97(21):1126211262.[96] Noguchi H, Gompper G. Fluid vesicles with viscous membranes in shear flow[J]. Physical review letters, 2004, 93(25):258102258102. [97] Pozrikidis C. Numerical simulation of the flowinduced deformation of red blood cells[J]. Annals of Biomedical Engineering, 2003, 31(10):11941205.[98] Stephanie E A G, Patricia A R, Joseph M D, et al. The effect of particle design on cellular internalization pathways [J]. USA:Natl Acad Sci,2008, 105:11613.[99] Timothy J M, Stephen W J, Joseph M D, et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles[J]. PNAS 2011,108(2): 586591.〖ZK)〗[100] Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorodpolymer solar cells[J]. Science, 2002, 295(5564):24252427.[101] Ataca C, Akturk E, Ciraci S, et al. Highcapacity hydrogen storage by metalized graphene [J]. Appl Phys Lett, 2008, 93, 4:0431230431233. |
[1] | 刘湘云; 冯俊虎; . 一种新型的测温方法——液晶测温法[J]. 广东工业大学学报, 2006, 23(4): 50-53. |
[2] | 林华清; 陈华章; . 数字式海水盐度计的研制[J]. 广东工业大学学报, 2002, 19(3): 43-45. |
|