广东工业大学学报 ›› 2016, Vol. 33 ›› Issue (03): 70-75.doi: 10.3969/j.issn.1007-7162.2016.03.013

• 综合研究 • 上一篇    下一篇

一个视网膜血管肿瘤数学模型整体解的存在唯一性

卢创业, 卫雪梅   

  1. 广东工业大学 应用数学学院,广东 广州 510520
  • 收稿日期:2015-05-20 出版日期:2016-05-19 发布日期:2016-05-19
  • 通信作者: 卫雪梅,女,教授,主要研究方向为偏微分方程. E-mail:wxm_gdut@163.com
  • 作者简介:卢创业(1990-),男,硕士研究生,主要研究方向为偏微分方程.
  • 基金资助:

    国家自然科学基金资助项目(11101095);广东省高层次人才项目(2014011)

Existence and Uniqueness of Global Solution to a Mathematical Model of Retinal Vascular Tumors

Lu Chuang-ye,Wei Xue-mei   

  1. School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2015-05-20 Online:2016-05-19 Published:2016-05-19

摘要:

研究了一个视网膜血管肿瘤的数学模型.该模型是肿瘤生长的固定边界问题,包含了反应扩散方程和常微分方程.文中先对模型进行分类讨论,然后通过运用Banach不动点定理,抛物方程的Lp估计,证明了模型在特定情况下局部解的存在唯一性.最后利用延拓的方法得到了模型在特定情况下整体解的存在唯一性.

关键词: 肿瘤生长; 整体解; 存在性; 唯一性

Abstract:

In this paper the researchers study a mathematical model of a retinal vascular tumor. The model is a fixed boundary problem of tumor growth, including several reaction diffusion equations and ordinary differential equations. The paper first discusses the classification of the model, then applies Lp-estimate and Banach Fixed Point Theorem to prove the existence and uniqueness of local solution under special conditions. In the end, the local solution proves to be global in special cases by continuation method.

Key words: tumor growth; global solution; existence; uniqueness

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!