广东工业大学学报 ›› 2017, Vol. 34 ›› Issue (06): 43-48.doi: 10.12052/gdutxb.170006

• 综合研究 • 上一篇    下一篇

基于L1/2自适应稀疏正则化的图像重建算法

叶向荣1, 刘怡俊2, 陈云华1, 熊炯涛1   

  1. 1. 广东工业大学 计算机学院;
    2. 广东工业大学 信息工程学院, 广东 广州 510006
  • 收稿日期:2017-01-04 出版日期:2017-11-09 发布日期:2017-11-22
  • 通信作者: 刘怡俊(1977-),男,教授,博士,研究方向为集成电路、北斗导航芯片与系统、计算机系统结构、物联网、嵌入式系统和信息管理系统.E-mail:yjliu@gdut.edu.cn E-mail:yjliu@gdut.edu.cn
  • 作者简介:叶向荣(1991-),男,硕士研究生,研究方向为图像超分辨率重建和人脸识别.E-mail:121846283@qq.com
  • 基金资助:
    广东省自然科学基金资助项目(2014A030310169,2016A030313713);广东省科技计划项目(2016B090918126,2016B090904001,2014B090901061,2015B090901060,2015B090908001,2015B090903080);广州市科技计划项目(2014Y2-00211)

A Super-resolution Image Reconstruction Algorithm with Adaptive L1/2 Sparse Regularization

Ye Xiang-rong1, Liu Yi-jun2, Chen Yun-hua1, Xiong Jiong-tao1   

  1. 1. School of Computer Science, Guangdong University of Technology;
    2. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2017-01-04 Online:2017-11-09 Published:2017-11-22

摘要: 为了解决图像超分辨率重建过程中出现的问题,结合图像的稀疏表示,增加控制邻近块兼容性的约束,建立具有邻近块兼容性约束的L1/2稀疏正则化模型. 采用加权L2范式代替Lp (0<p<1)范式,对迭代加权最小二乘法进行转化,提出一种自适应正则化参数选取的算法. 通过拼接字典的方法,训练出重要的特征并优化了重建图像的质量. 实验结果表明,该重建方法在去噪和保留边缘信息方面具有较好的效果,重建的高分辨率图像在视觉上具有清晰锐利的特点,而且在峰值信噪比和结构相似度两项指标上都优于传统的重建方法.

关键词: L1/2非凸优化, 稀疏表示, 自适应正则化, 超分辨率重建, 邻近块兼容性, 拼接字典

Abstract: In order to solve the ill-posing problem and poor effect of fixed regularization parameter in super-resolution image reconstruction, an adaptive regularization combining the study of sparse representation is proposed. By additional restrictions for compatibility of adjacent patches, a new L1/2 non-convex optimization model is built. Reweighted L2 Norm rather than Lp (0<p<1) Norm is applied into the adaptive algorithm for adjustment of regularization parameter. With the help of joint dictionary training method, some important features for improving the quality of reconstructed image are obtained. Experimental results show that the method has significant advantages in denoising and preserving edge details. It is showed that the proposed method not only makes the desired high-resolution images visually clearer, but it also outperforms some traditional methods in both the value of peak signal to noise ratio and structural similarity.

Key words: L1/2 non-convex optimization, sparse representation, adaptive regularization, super-resolution reconstruction, compatibility of adjacent patches, jointing dictionary

中图分类号: 

  • TP391.41
[1] 夏皓, 蔡念, 王平, 王晗. 基于多分辨率学习卷积神经网络的磁共振图像超分辨率重建[J]. 广东工业大学学报, 2020, 37(06): 26-31.
[2] 谢忠德. 一种基于l1范数的欠定盲源分离算法[J]. 广东工业大学学报, 2012, 29(2): 89-93.
[3] 王华丹; 刘海林; . 稀疏盲源分离问题的恢复性研究[J]. 广东工业大学学报, 2008, 25(2): 44-46.
[4] 谈华暠; 刘海林; . 盲稀疏源信号分离算法的恢复性研究[J]. 广东工业大学学报, 2007, 24(03): 28-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!