广东工业大学学报 ›› 2018, Vol. 35 ›› Issue (03): 1-9.doi: 10.12052/gdutxb.180033

• 特约报告 •    下一篇

赛博智能经济与区块链

徐恪, 姚文兵   

  1. 清华大学 计算机系, 北京 100084
  • 收稿日期:2018-03-02 出版日期:2018-05-09 发布日期:2018-04-26
  • 作者简介:徐恪(1974-),教授,博士生导师,研究方向为大数据、区块链.
  • 基金资助:
    国家自然科学基金资助项目(61170292,61472212)

Cyber Intelligent Economy and Blockchain

Xu Ke, Yao Wen-bing   

  1. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
  • Received:2018-03-02 Online:2018-05-09 Published:2018-04-26
  • Supported by:
     

摘要: 互联网已经和经济系统深度融合形成了新的“赛博经济系统”.本文探讨了赛博经济系统的主要特征,分析了当前赛博经济发飞速发展的原因.从信息的角度出发,赛博经济是信息增长更快的经济,而信息有序与快速增长的核心原因是算法,进而以算法为基础提出了赛博经济的新形态——赛博智能经济.认为区块链技术有望成为赛博智能经济的信任基础设施,使赛博智能经济迈入新时代.同时,详细分析了区块链技术的特点,给出了当前区块链发展过程中面临机遇与挑战.

关键词: 区块链, 赛博经济, 智能经济, 比特币

Abstract: The Internet combines economic system forming the innovative cyber economic system. The principal characteristics of cyber economy are discussed and the reason of its rapid development analyzed. From the perspective of information, cyber economy is of faster information growth, and the core reason of the growth is algorithms. As the foundation, algorithms prompt the new form of cyber economy i.e. cyber intellectual economy. Analogously, blockchain is expected to be the reliable infrastructure of cyber intellectual economy and consequently to innovate it. Furthermore, the characteristics of blockchain are also analyzed, pointing out the future opportunities and challenges.

Key words: blockchain, cyber economy, intelligent economy, bitcoin

中图分类号: 

  • TP393
[1] 徐恪, 王勇, 李沁. 赛博新经济[M].北京:清华大学出版社,2016:1-49
[2] 徐恪, 李沁. 算法统治世界[M].北京:清华大学出版社, 2017:324-339.
[3] ABDELMALEK M, GANGER G R, GOODSON G R, et al. Fault-scalable Byzantine fault-tolerant services[C]//Twentieth ACM Symposium on Operating Systems Principles. Brighton:ACM, 2005:59-74.
[4] WING J M. Computational thinking[J]. Acm Sigcse Bulletin, 2006, 49(3):3-3.
[5] 弗兰西斯·福山. 信任:社会道德与繁荣的创造[M].桂林:广西师范大学出版社, 1998.
[6] 徐恪, 徐明伟. 高级计算机网络[M].北京:清华大学出版社, 2012:354-384.
[7] STOICA I, MORRIS R, KARGER D, et al. Chord:A scalable peer-to-peer lookup service for internet applications[C]//Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications. San Diego:ACM, 2001:149-160.
[8] RATNASAMY S, FRANCIS P, HANDLEY M, et al. A scalable content-addressable network[C]//Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications. San Diego:ACM, 2001:161-172.
[9] KAMVAR S D, SCHLOSSER M T, GARCIA-MOLINA H. The Eigentrust algorithm for reputation management in P2P networks[C]//International Conference on World Wide Web. Budapest:ACM, 2003:640-651.
[10] LAMPORT, LESLIE, SHOSTAK, et al. The Byzantine generals problem[J]. Acm Transactions on Programming Languages & Systems, 1982, 4(3):382-401.
[11] WANG J. A simple Byzantine generals protocol[J]. Journal of Combinatorial Optimization, 2014, 27(3):541-544.
[12] PEASE M. Reaching agreement in the presence of faults[J]. Journal of the Acm, 1980, 27(2):228-234.
[13] CASTRO M. Practical Byzantine fault tolerance and proactive recovery[J]. ACM Transaction on Computer Systems, 2002, 20(4):398-461.
[14] COWLING J, MYERS D, LISKOV B, et al. HQ replication:a hybrid quorum protocol for byzantine fault tolerance[C]//OSDI'06 Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation. Seattle:USENIX Association, 2006:13.
[15] KOTLA R, ALVISI L, DAHLIN M, et al. Zyzzyva:speculative Byzantine fault tolerance[C]//ACM Sigops Symposium on Operating Systems Principles. Stevenson:ACM, 2007:45-58.
[16] GUERRAOUI R. The next 700 BFT protocols[C].//International Conference on Principles of Distributed Systems. Heidelberg:Springer, 2010:363-376.
[17] CLEMENT A, WONG E, ALVISI L, et al. Making Byzantine fault tolerant systems tolerate Byzantine faults[C]//Usenix Symposium on Networked Systems Design and Implementation, NSDI 2009. Boston:DBLP, 2009:153-168.
[18] AUBLIN P L, MOKHTAR S B. RBFT:redundant Byzantine fault tolerance[C]//2013 IEEE 33rd International Conference on Distributed Computing Systems. Philadelphia:IEEE Computer Society, 2013:297-306.
[19] CHUN B G, MANIATIS P, SHENKER S, et al. Attested append-only memory:making adversaries stick to their word[C]//Stevenson:ACM, 2007:189-204.
[20] VERONESE G S, CORREIA M, BESSANI A N, et al. Efficient Byzantine fault-tolerance[J]. IEEE Transactions on Computers, 2013, 62(1):16-30.
[21] BAHSOUN J P, GUERRAOUI R, SHOKER A. Making BFT protocols really adaptive[C]//Parallel and Distributed Processing Symposium.Hyderabad:IEEE, 2015:904-913.
[22] NAKAMOTO S. Bitcoin:a peer-to-peer electronic cash system[M].[S.l.]:Consulted, 2008.
[23] KOBLITZ N. Elliptic curve cryptosystems[J]. Mathematics of Computation, 1987, 48(177):203-209.
[24] MERKLE R C. A digital signature based on a conventional encryption function[J]. Th Conference on Advances in Cryptology, 1987,293(1):369-378.
[25] DECKER C, WATTENHOFER R. Information propagation in the Bitcoin network[C]//2013 IEEE International Conference on Peer-To-Peer Computing. Trento:IEEE, 2013:1-10.
[26] EYAL I, SIRER E G. Majority is not enough:Bitcoin mining is vulnerable[C]//International Conference on Financial Cryptography and Data Security. Heidelberg:Springer, 2014, 8437:436-454.
[27] ANDROULAKI E, KARAME G O, ROESCHLIN M, et al. Evaluating user privacy in Bitcoin[C]//International Conference on Financial Cryptography and Data Security. Heidelberg:Springer, 2013:34-51.
[28] CACHIN, C. Architecture of the Hyperledgerblockchain fabric[C]//Workshop on Distributed Cryptocurrencies and Consensus Ledgers(DCCL). Chicago:[s.n.], 2016.
[29] BELLARE M, KOHNO T. Hash function balance and its impact on birthday attacks[J]. Lecture Notes in Computer Science, 2004, 3027:401-418.
[30] MIERS I, GARMAN C, GREEN M, et al. Zerocoin:anonymous distributed E-Cash from Bitcoin[C]//2013 IEEE Symposium on Security & Privacy. Berkeley:IEEE, 2013:397-411.
[31] SZABO N. Formalizing and securing relationships on public networks[J/OL]. First Monday, 1997, 2(9)[2017-12-18]. http://firstmonday.org/ojs/index.php/fm/article/view/548/469.DOI:http://dx.doi.org/10.5210/fm.v2i9.548
[32] SASSON E B, CHIESA A, GARMAN C, et al. Zerocash:decentralized anonymous payments from Bitcoin[C]//2014 IEEE Symposium on Security and Privacy. San Jose:IEEE, 2014:459-474.
[1] 李光程, 赵庆林, 谢侃. 去中心化的数据处理方案设计[J]. 广东工业大学学报, 2021, 38(06): 77-83.
[2] 陈冰儿, 王帮海, 劳南新. 基于DPoS扩展的量子加密区块链[J]. 广东工业大学学报, 2021, 38(02): 34-38.
[3] 聂敏航, 欧毓毅. 一种可自定义金额的数字货币去中心化混淆方案[J]. 广东工业大学学报, 2021, 38(01): 64-68.
[4] 魏生, 戴科冕. 区块链金融场景应用分析及企业级架构探讨[J]. 广东工业大学学报, 2020, 37(02): 1-10.
[5] 魏生, 戴科冕. 基于区块链技术的私募股权众筹平台变革及展望[J]. 广东工业大学学报, 2019, 36(02): 37-46.
[6] 冷杰武, 江平宇, 刘加军, 陈庆新, 刘强. 区块链技术驱动的产消者自组织产品制造社群构建[J]. 广东工业大学学报, 2017, 34(05): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!