广东工业大学学报 ›› 2018, Vol. 35 ›› Issue (03): 100-106.doi: 10.12052/gdutxb.170130

• 综合研究 • 上一篇    下一篇

基于动态模糊混沌粒子群算法的含电动汽车微电网多目标优化调度研究

唐俊杰, 陈璟华, 邱明晋   

  1. 广东工业大学 自动化学院, 广东 广州 510006
  • 收稿日期:2016-11-30 出版日期:2018-05-09 发布日期:2018-05-24
  • 作者简介:唐俊杰(1990-),男,硕士研究生,主要研究方向为电力系统安全运行与控制.
  • 基金资助:
    中央财政支持地方高校发展专项资金项目([2016]202号)

Multi-objective Dispatch of Microgrid Based on Dynamic Fuzzy Chaotic Particle Swarm Algorithm

Tang Jun-jie, Chen Jing-hua, Qiu Ming-jin   

  1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2016-11-30 Online:2018-05-09 Published:2018-05-24
  • Supported by:
     

摘要: 提出一种基于动态模糊混沌粒子群算法的微电网多目标优化调度方法.利用动态目标函数与模糊理论解决多目标主观权值的缺陷,建立以运行维护成本、环境污染物成本为目标的微电网多目标调度模型.微电网多目标优化调度属于多变量、强非线性优化问题,针对传统粒子群算法求解时容易陷入局部最优等问题,在粒子初始化时,引入一种结合Chebyshev映射和Logistic映射的组合混沌映射,在粒子更新过程中,引入Logistic映射,从而增加粒子寻优的遍历性,加强算法全局优化能力.针对惯性权重在粒子群更新过程中的取值问题,采用迭代次数梯度改变惯性权重的策略.仿真结果证明了算法具有更高的收敛效率和更好的收敛效果.

关键词: 微电网调度, 动态模糊, 混沌组合映射, 粒子群算法, 多目标优化

Abstract: A method to deal with dispatch of Microgrid is proposed based on the dynamic fuzzy chaotic particle swarm algorithm. Using dynamic objective function and fuzzy theory to solve the defects of the subjective weight, a microgrid scheduling model is found which aims for lower maintenance cost and environmental pollution. Multi-objective dispatch of microgrid belongs to the multivariable and strongly nonlinear optimization problem. Since the traditional particle swarm algorithm tends to trap in the local superior, in the particle initialization, a chaotic mapping combining the Chebyshev maps and the Logistic map is introduced, and in the process of particle update, the Logistic map is introduced which increases the ergodicity of particles and strengthens global optimization ability of algorithm. According to the value of inertia weight in particle swarm updating, the strategy of changing the inertia weight with the gradient of iteration number adopted. The simulation experiment of multi-objective dispatch of microgrid shows that the algorithm has higher convergence speed and better convergence effect.

Key words: dispatch of microgrid, dynamic fuzzy, chaotic combining mapping, particle swarm optimization algorithm, multi-objective optimization

中图分类号: 

  • TM734
[1] 黄宜平, 马晓轩. 微电网技术综述(英文)[J]. 电工技术学报, 2015, 30(S1):320-328.HUANG Y P, MA X X. Research on microgrid technology[J]. Transactions of China Electrotechnical Society, 2015, 30(S1):320-328.
[2] 杨新法, 苏剑, 吕志鹏, 等. 微电网技术综述[J]. 中国电机工程学报, 2014, 34(1):570-70.YANG X F, SU J, LYU Z P, et al. Overview on micro-grid technology[J]. Proceedings of the Chinese Society for Electrical Engineering, 2014, 34(1):570-70.
[3] LASSETER R H. MicroGrids[C]//Power Engineering Society Winter Meeting. USA New York:IEEE, 2002, 1(1):305-308.
[4] 钱科军, 周承科, 袁越. 纯电动汽车与电网相互关系的研究现状(英文)[J]. 电网与清洁能源, 2010, 26(11):1-7.QIAN K J, ZHOU C K, YUAN Y. A review of research on the interaction between fully electric vehicles and power syste- ms[J]. Power System and Clean Energy, 2010, 26(11):1-7.
[5] 李鹏, 张玲, 王伟, 等. 微网技术应用与分析[J]. 电力系统自动化, 2009, 33(20):109-115.LI P, ZHANG L, WANG W, et al. Application and analysis of microgrid[J]. Automation of Electric Power Systems, 2009, 33(20):109-115.
[6] 严凤, 楚非非. 微网多目标动态经济优化调度[J]. 电测与仪表, 2016, 53(9):90-93.YAN F, CHU F F. Microgrid dynamic economic dispatch of multiobjective[J]. Electrical Measurement and Instrumentation, 2016, 53(9):90-93.
[7] 苗雨阳, 卢锦玲, 朱国栋. 基于改进多目标粒子群算法的微电网并网优化调度[J]. 电力科学与工程, 2012, 28(7):15-20.MIAO Y Y, LU J L, ZHU G D. Improved multi-objective particle swarm optimization algorithm based scheduling optimization of grid-connected microgrid[J]. Electric Power Science and Engineering, 2012, 28(7):15-20.
[8] 杨毅, 雷霞, 徐贵阳, 等. 采用PSO-BF算法的微电网多目标电能优化调度[J]. 电力系统保护与控制, 2014, 42(13):13-20.YANG Y, LEI X, XU G Y, et al. Multi-objective optimal dispatch of microgrid using particle swarm optimization combined with bacterial foraging algorithm[J]. Power System Protection and Control, 2014, 42(13):13-20.
[9] 唐巍, 高峰. 考虑用户满意度的户用型微电网日前优化调度[J]. 高电压技术, 2017, 43(1):140-148.TANG W, GAO F. Optimal operation of household microgrid day-ahead energy considering user satisfaction[J]. High Voltage Engineering, 2017, 43(1):140-148.
[10] 王璟, 王利利, 郭勇, 等. 计及电动汽车的微电网经济调度方法[J]. 电力系统保护与控制, 2016, 44(17):111-117.WANG J, WANG L L, GUO Y, et al. Microgrid economic dispatch method considering electric vehicles[J]. Power System Protection and Control, 2016, 44(17):111-117.
[11] 刘衍民, 邵增珍, 赵庆祯. 基于自适应拥挤网格的多目标粒子群算法[J]. 计算机科学, 2011, 38(4):260-262.LIU Y M, SHAO Z Z, ZHAO Q Z. Multi-objective particle swarm optimizer based on adaptive crowding grid[J]. Computer Science, 2011, 38(4):260-262.
[12] 吴亚丽, 徐丽青. 一种基于粒子群算法的改进多目标文化算法[J]. 控制与决策, 2012, 27(8):1127-1132.WU Y L, XU L Q. An improved multi-objective cultural algorithm based on particle swarm optimization[J]. Control and Decision, 2012, 27(8):1127-1132.
[13] 周燕, 刘培玉, 赵静, 等. 基于自适应惯性权重的混沌粒子群算法[J]. 山东大学学报(理学版), 2012, 47(3):27-32.ZHOU Y, LIU P Y, ZHAO J, et al. Chaos particle swarm optimization based on the adaptive inertia weight[J]. Journal of Shandong University (Natural Science Edition), 2012, 47(3):27-32.
[14] 郭经韬, 陈璟华, 周俊, 等. 基于组合混沌序列动态粒子群算法的电力系统无功优化[J]. 广东工业大学学报, 2014, 31(02):85-89.GUO J T, CHEN J H, ZHOU J, et al. Reactive power optimization based on combined chaotic dynamic particle swarm optimization algorithm[J]. Journal of Guangdong University of Technology, 2014, 31(02):85-89.
[15] 茆美琴, 孙树娟, 苏建徽. 包含电动汽车的风/光/储微电网经济性分析[J]. 电力系统自动化, 2011, 35(14):30-35.MAO M Q, SUN S J, SU J H. Economical analysis of a microgrid with wind/photovoltaic/storages and electric vehicles[J]. Automation of Electric Power Systems, 2011, 35(14):30-35.
[16] 吴红斌, 侯小凡, 赵波, 等. 计及可入网电动汽车的微网系统经济调度[J]. 电力系统自动化, 2014, 38(9):77-84.WU H B, HOU X F, ZHAO B, et al. Management and control scheme for intelligent home appliances based on electricity demand response[J]. Automation of Electric Power Systems, 2014, 38(9):77-84.
[17] 庄怀东, 吴红斌, 刘海涛, 等. 含电动汽车的微网系统多目标经济调度[J]. 电工技术学报, 2014, 29(S1):365-373.ZHUANG H D, WU H B, LIU H T, et al. Multi-objective economic dispatch of microgrid system considering electric vehicles[J]. Transactions of China Electrotechnical Society, 2014, 29(S1):365-373.
[1] 陈思豆, 黄卓铨, 杨兴雨. 考虑限制性卖空的多期模糊投资组合优化模型[J]. 广东工业大学学报, 2021, 38(02): 39-47.
[2] 唐超兰, 谢义. 6061铝合金铣削工艺参数多目标优化[J]. 广东工业大学学报, 2020, 37(05): 87-93.
[3] 吴丹琦, 赖俊升, 杨俊华, 李学聪, 赖来利, 熊锋俊. 基于局部粒子群算法的家庭用电负荷优化控制策略[J]. 广东工业大学学报, 2019, 36(06): 66-73.
[4] 胡德卿, 熊锐, 吴坚, 谢火志, 潘浩坤. 基于滚流比的某汽油发动机进气道优化设计和研究[J]. 广东工业大学学报, 2019, 36(01): 87-92.
[5] 周怡璐, 王振友, 李叶紫, 李锋. MOEA/D聚合函数的二次泛化及其优化性能分析[J]. 广东工业大学学报, 2018, 35(04): 37-44.
[6] 黄美华, 温洁嫦, 何勇. 求解多目标背包问题的改进人工鱼群算法[J]. 广东工业大学学报, 2016, 33(05): 44-48.
[7] 高鹰, 余琦, 刘外喜. 应用云模型和Favour排序的多目标优化算法[J]. 广东工业大学学报, 2014, 31(3): 14-20.
[8] 姚蕾. 一种粒子群-Mamdani模糊神经网络的参数优化新算法[J]. 广东工业大学学报, 2014, 31(1): 36-39.
[9] 许欢, 温洁嫦. 差分进化算法在物流配送路径优化中的应用[J]. 广东工业大学学报, 2013, 30(4): 61-64.
[10] 谢桂芩,杨玉华,涂井先. 带有时间窗的虚拟场站接驳补货车辆路径问题[J]. 广东工业大学学报, 2013, 30(1): 61-67.
[11] 谢桂芩, 涂井先. 分区域多目标进化算法在协同车辆路径问题中的应用[J]. 广东工业大学学报, 2011, 28(4): 38-44.
[12] 张金凤 , 陈蔚丽. 多目标进化算法在物流配送中心选址中的应用[J]. 广东工业大学学报, 2010, 27(4): 76-80.
[13] 刘玉兰;. 下层带扰动参数的二层多目标优化问题的灵敏度分析[J]. 广东工业大学学报, 2009, 26(2): 11-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!