广东工业大学学报 ›› 2018, Vol. 35 ›› Issue (03): 47-53.doi: 10.12052/gdutxb.180036
黎启祥1, 肖燕珊1, 郝志峰2, 阮奕邦1
Li Qi-xiang1, Xiao Yan-shan1, Hao Zhi-feng2, Ruan Yi-bang1
摘要: 在多示例学习中,当训练样本数量不充足或者训练样本中存在噪声信息时,分类器的分类性能将降低.针对该问题,本文提出了一种基于抗噪声的多任务多示例学习算法.一方面,针对训练样本中可能存在的噪声问题,该算法赋予包中示例不同的权值,通过迭代更新权值来降低噪声数据对预测结果的影响.另一方面,针对训练样本数量不充足问题,该算法运用多任务学习策略,通过同时训练多个学习任务,利用任务间的关联性来提高各个分类任务的预测性能.实验结果证明,与现有的分类算法相比,该方法在相同的实验条件下具有更优秀的性能.
中图分类号:
[1] SCHÖLKOPF B, PLATT J, HOFMANN T. Multi-instance multi-label learning with application to scene classification[C]//NIPS'06 Proceedings of the 19th International Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2006:1609-1616. [2] DIETTERICH T G, LATHROP R H, LOZANO-PÉREZ T. Solving the multiple-instance problem with axis-parallel rectangles[J]. Artificial Intelligence, 1997, 89(1-2):31-71. [3] CHINNIYAN K, GANGADHARAN S, SABANAIKAM K. Semantic similarity based web document classification using support vector machine[J]. International Arab Journal of Information Technology, 2017, 14(3):258-292. [4] FENG S, XU D. Transductive multi-Instance multi-Label learning algorithm with application to automatic image annotation[J]. Expert Systems with Applications, 2010, 37(1):661-670. [5] 梁礼欣, 郝志峰, 蔡瑞初, 等. 基于混合高斯分布伪样本生成的情感分析方法[J]. 广东工业大学学报, 2016, 33(6):85-90.LIANG L X, HAO Z F, CAI R C, et al. An approach to sentiment analysis of Chinese microblogs based on Gaussian mixture distribution pseudo-sample generation[J]. Journal of Guangdong University of Technology, 2016, 33(6):85-90. [6] 陈炳丰, 郝志峰, 蔡瑞初, 等. 面向汽车评论的细粒度情感分析方法研究[J]. 广东工业大学学报, 2017, 34(3):8-14.CHEN B F, HAO Z F, CAI R C, et al. A fine-grained sentiment analysis algorithm for automotive reviews[J]. Journal of Guangdong University of Technology, 2017, 34(3):8-14. [7] CHEN D Y, LIN K Y. Face-based multiple instance analysis for smart electronics billboard[J]. Multimedia Tools and Applications, 2012, 59(1):221-240. [8] 杨帆, 李建平, 李鑫, 等. 基于多任务深度卷积神经网络的显著性对象检测算法[J]. 计算机应用, 2018, 38(1):91-96.YANG F, LI J P, LI X, et al. Salient object detection algorithm based on multi-task deep convolutional neural network[J]. Journal of Computer Applications, 2018, 38(1):91-96. [9] ANDREWS S, TSOCHANTARIDIS I, HOFMANN T. Support vector machines for multiple-instance learning[J]. Advances in Neural Information Processing Systems, 2003, 15(2):561-568. [10] ZHANG Q, GOLDMAN S A. EM-DD:an improved multiple-instance learning technique[C]//International Conference on Neural Information Processing Systems:Natural and Synthetic. Vancouver:MIT Press, 2001:1073-1080. [11] WANG J, ZUCKER J D. Solving the multiple-instance problem:a lazy learning approach[C]//Seventeenth International Conference on Machine Learning.San Francisco:Morgan Kaufmann, 2000:1119-1126. [12] 贾松达, 庞宇松, 阎高伟. 多任务LS-SVM在时间序列预测中的应用[J]. 计算机工程与应用, 2018, 54(3):233-237.JIA S D, PANG Y S, YAN G W, et al. Multi-task LS-SVM for application of time series prediction[J]. Computer Engineering and Applications, 2018, 54(3):233-237. [13] EVGENIOU T, PONTIL M. Regularized multi-task learning[C]//Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Seattle:ACM, 2004:109-117. [14] Chih-Chung Chang, Chih-jen Lin. LIBSVM:A library for support vector machines[J]. Journal ACM Transactions on Intelligent Systems and Technology, 2011, 2(3):1-27. [15] 刘成, 彭进业. 基于多任务学习的自然图像分类研究[J]. 计算机应用研究, 2012, 29(7):2773-2775.LIU C, PENG J Y. Research of classification method for natural images based on multitask learning[J]. Application Research of Computers, 2012, 29(7):2773-2775. [16] AGGARWAL C C, YU P. A framework for clustering uncertain data streams[C]//IEEE International Conference on Data Engineering. Cancun:IEEE, 2008:150-159. [17] ZENG T, JI S W. Deep convolutional neural networks for multi-instance multi-task learning[C]//IEEE International Conference on Data Mining. Atlantic:IEEE, 2015:579-588. |
[1] | 蔡昊, 刘波. 半监督两个视角的多示例聚类模型[J]. 广东工业大学学报, 2021, 38(03): 22-28,47. |
[2] | 冯广, 孔立斌, 石鸣鸣, 贺敏慧, 何雅萱. 基于Inception与Residual组合网络的农作物病虫害识别[J]. 广东工业大学学报, 2020, 37(03): 17-22. |
[3] | 肖河曼, 成思源, 杨雪荣, 李苏洋, 张海燕. 基于功能相似矩阵的异类产品专利规避设计[J]. 广东工业大学学报, 2018, 35(05): 5-10. |
[4] | 李俊磊, 滕少华, 张巍. 基于决策树组合分类器的气温预测[J]. 广东工业大学学报, 2014, 31(4): 54-59. |
|