广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (03): 22-28,47.doi: 10.12052/gdutxb.200120
蔡昊, 刘波
Cai Hao, Liu Bo
摘要: 提出了一种新的半监督两个视角的多示例聚类模型, 整合文本视角和图像视角解决了伴有少量标签的多示例图像聚类问题。提出的模型首先嵌入概念分解和多示例核成为一个整体, 学习每个视角的关联矩阵和两个视角所共享的聚类指示矩阵。而后, 应用${l_{2, 1}}$范数学习最优的关联矩阵和聚类指示矩阵。进一步地, 为了增加包之间的判别力, 提出的模型强迫相同标签包的聚类指示向量间的相似性趋于1, 不同标签包的指示向量间的相似性趋于0。最后, 给出一种迭代更新算法优化提出的模型。实验结果表明,提出的模型优于现有的多示例聚类模型。
中图分类号:
[1] TIAN M W, YAN S R, TIAN X X, et al. Research on image recognition method of bank financing bill based on binary tree decision [J]. Journal of Visual Communication and Image Representation, 2019, 60: 123-128. [2] WANG P, ZHANG P F, LI Z W. A three-way decision method based on gaussian kernel in a hybrid information system with images: an application in medical diagnosis [J]. Applied Soft Computing, 2019, 77: 734-749. [3] REN Y Z, WANG N, LI M X, et al. Deep density-based image clustering [J]. Knowledge-Based Systems, 2020, 197(7): 105841. [4] YANG Z Y, ZHANG Y, XIANG Y, et al. Non-negative matrix factorization with dual constraints for image clustering [J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2018, 50(7): 1-10. [5] 黎启祥, 肖燕珊, 郝志峰, 等. 基于抗噪声的多任务多示例学习算法研究[J]. 广东工业大学学报, 2018, 35(3): 47-53. LI Q X, XIAO Y S, HAO Z F, et al. An algorithm based on multi-instance anti-noise learning [J]. Journal of Guangdong University of Technology, 2018, 35(3): 47-53. [6] ZHANG D, WANG F, SI L, et al. Maximum margin multiple instance clustering with applications to image and text clustering [J]. IEEE Transactions on Neural Networks, 2011, 22(5): 739-751. [7] XU W, GONG Y H. Document clustering by concept factorization[C]//Proceedings of the International ACM Sigir Conference on Research and Development in Information Retrieval. Sheffield: ACM, 2004: 202-209. [8] YANG Y, WANG H. Multi-view clustering: a survey [J]. Big Data Mining & Analytics, 2018, 1(2): 3-27. [9] ZHOU W, WANG H, YANG Y. Consensus graph learning for incomplete multi-view clustering[C]// Proceedings of the 23rd Pacific-asia Conference on Knowledge Discovery and Data Mining. Macau: ACM, 2019: 529-540. [10] CAO X C, ZHANG C Q, FU H Z, et al. Diversity-induced multi-view subspace clustering[C]//Proceedings of the IEEE Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 586-594. [11] WANG J, TIAN F, YU H C, et al. Diverse non-negative matrix factorization for multi-view data representation [J]. IEEE Transactions on Cybernetics, 2018, 48(9): 1-13. [12] LIU J, JIANG Y, LI Z C, et al. Partially shared latent factor learning with multiview data [J]. IEEE Transactions on Neural Networks, 2015, 26(6): 1233-1246. [13] CARBONNEAU M A, CHEPLYGINA V, GRANGER E, et al. Multiple instance learning: a survey of problem characteristics and applications [J]. Pattern Recognition, 2017, 77: 329-353. [14] MELKI G, CANO A, VENTURA S. Mirsvm: multi-instance support vector machine with bag representatives [J]. Pattern Recognition, 2018, 79: 228-241. [15] ANDERWS S, TSOCHANTARIDIS I, HOFMANN T. Support vector machines for multiple-instance learning[C]//Proceedings of the Neural Information Processing Systems. Vancouver: Nips, 2003: 577-584. [16] WANG H Y, YANG Q, ZHA H B. Adaptive p-posterior mixture-model kernels for multiple instance learning[C]//Proceedings of the International Conference on Machine Learning. Helsinki: ACM, 2008: 1136-1143. [17] GARTNER T, FLACH P A, KOWALCZYK A, et al. Multi-instance kernels[C]//Proceedings of the International Conference on Machine Learning. Sydney: ACM, 2002: 179-186. [18] ZHANG M L, ZHOU Z H. Multi-instance clustering with applications to multi-instance prediction [J]. Applied Intelligence, 2009, 31(1): 47-68. [19] Chua T S, Tang J H, Hong R C, et al. Nus-wide: a real-world web image database from national university of singapore[C]//Proceedings of the ACM International Conference on Image and Video Retrieval. Santorini: ACM, 2009: 368-375. [20] WEI X S, ZHOU Z H. An empirical study on image bag generators for multi-instance learning [J]. Machine Learning, 2016, 105(2): 155-198. |
[1] | 黎启祥, 肖燕珊, 郝志峰, 阮奕邦. 基于抗噪声的多任务多示例学习算法研究[J]. 广东工业大学学报, 2018, 35(03): 47-53. |
|