广东工业大学学报 ›› 2018, Vol. 35 ›› Issue (04): 68-74.doi: 10.12052/gdutxb.170089

• 综合研究 • 上一篇    下一篇

具有能量获取基站的相邻多蜂窝小区的能量与频谱分配研究

童辉志1, 张广驰1, 周绪龙1, 崔苗1, 刘怡俊1, 林凡2   

  1. 1. 广东工业大学 信息工程学院, 广东 广州 510006;
    2. 广州杰赛科技股份有限公司, 广东 广州 510310
  • 收稿日期:2017-04-25 出版日期:2018-07-09 发布日期:2018-05-24
  • 通信作者: 张广驰(1982-),副教授,主要研究方向为信号处理、无线通信和信息安全.E-mail:gczhang@gdut.edu.cn E-mail:gczhang@gdut.edu.cn
  • 作者简介:童辉志(1989-),男,硕士研究生,主要研究方向为能量获取通信的资源调度.
  • 基金资助:
    国家自然科学基金资助项目(61571138);广东省自然科学基金资助项目(2015A030313481);广东省学科建设专项资金科技创新项目(2013KJCX0060);广东省科技计划项目(2016A050503044,2016KZ010101,2016KZ010107,2016B090904001,2014B090901061,2015B090901060,2015B090908001);广州市科技计划项目(201604020127,2014Y2-00211);广东工业大学培英育才计划资助项目(220411321)

Joint Energy and Spectrum Allocation in Multiple Adjacent Cells with Energy Harvesting Base Stations

Tong Hui-zhi1, Zhang Guang-chi1, Zhou Xun-long1, Cui Miao1, Liu Yi-jun1, Lin Fan2   

  1. 1. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. Guangzhou GCI Science-Technology Co., Ltd., Guangzhou 510310, China
  • Received:2017-04-25 Online:2018-07-09 Published:2018-05-24

摘要: 研究在基站具有能量获取功能的条件下,相邻多蜂窝小区下行链路的能量与频谱的协作分配,主要考虑用户效用和相邻多蜂窝小区基站收益的联合最大化.在该问题中,用户对小区的选择是资源分配过程中的关键步骤.其中,它的最优方法是穷搜索,但计算复杂度过高.本文提出一种优化用户小区选择的次优方法——信道增益比选择法,解决用户快速选择小区的问题.当用户选择小区后,本文用广义的Stackelberg博弈建模来解决每个蜂窝小区的能量与频谱分配问题.同时基于信道增益比选择法提出两种基准方法——最大信道增益选择法和最短距离选择法.仿真结果表明,信道增益比选择法相对于最大信道增益选择法和最短距离选择法具有更好的用户公平性和基站收益.

关键词: 能量获取, 资源分配, Stackelberg博弈, 信道增益比

Abstract: Joint energy and spectrum cooperative allocation in the downlink is investigated for multiple adjacent cells equipped with energy harvesting base stations. In particular, the joint maximization of the users' utilities and the base stations' revenues in multiple adjacent cells is considered. The users' choice of cells is a key step in the resource allocation process. Since each user has multiple options to join adjacent cells, the optimal method of solving the sum-utility maximizing energy and spectrum allocation problem is the exhaustive search, which finds the best solution among all possible sets of user choices and has high complexity. A computation-efficient suboptimal method of deciding which user can choose the appropriate cell to join is proposed based on the channel gain ratio selection. When the users' choices are fixed, the energy and spectrum allocation problems can be matched with the framework of a generalized Stackelberg game, and can be solved. At the same time, two kinds of reference methods, the maximum channel gain selection method and shortest distance selection method, are proposed based on the channel gain ratio selection. Simulation results have shown that the proposed method has better utility and revenue performances than maximum channel gain selection and shortest distance selection method.

Key words: energy harvesting, resource allocation, Stackelberg game, channel gain ratio

中图分类号: 

  • TN929.5
[1] 陈璟华, 杨宜民. 风力/能发电的发展现状和展望[J]. 广东工业大学学报, 2007, 24(3):1-5.CHEN J H, YANG Y M. Status and trend of wind/solar power generation[J]. Journal of Guangdong University of Technology, 2007, 24(3):1-5.
[2] PIRO G, MIOZZO M, FORTE G, et al. HetNets powered by renewable energy sources:sustainable next-generation cellular networks[J]. IEEE Internet Computing, 2013, 17(1):32-39.
[3] WANG C, NEHRIR M H. Power management of a stand-alone wind/photovoltaic/fuel cell energy system[J]. IEEE Transactions on Energy Conversion, 2008, 23(3):957-967.
[4] DIAMANTOULAKIS P D, GHASSEMI A, KARAGIANNIDIS G K. Smart hybrid power system for base transceiver stations with real-time energy management[C]//Global Communications Conference. Georgia, Atlanta:IEEE, 2013:2773-2778.
[5] HUR S, KIM T, LOVE D J, et al. Multilevel millimeter wave beam forming for wireless backhaul[C]//GLOBECOM Workshops. Texas Houston:IEEE, 2011:253-257.
[6] DHILLON H S, LI Y, NUGGEHALLI P, et al. Fundamentals of heterogeneous cellular networks with energy harvesting[J]. IEEE Transactions on Wireless Communications, 2014, 43(5):2782-2797.
[7] SONG Y, ZHAO M, ZHOU W, et al. Throughput-optimal user association in energy harvesting relay-assisted cellular networks[C]//Sixth International Conference on Wireless Communications and Signal Processing. Hefei:IEEE, 2014:1-6.
[8] TONG H Z, ZHANG G C, WAN L Q, et al. Joint resource allocation with energy harvesting base stations in two adjacent cells[C]//2016 IEEE International Conference on Consumer Electronics-China (ICCE-China). Guangzhou:IEEE, 2016:1-6.
[9] DIAMANTOULAKIS P D, PAPPI K N, KARAGIANNIDIS G K, et al. Autonomous energy harvesting base stations with minimum storage requirements[J]. IEEE Wireless Communications Letters, 2015, 4(3):265-268.
[10] XU C, SHENG M, YANG C, et al. Pricing- based multiresource allocation in OFDMA cognitive radio networks:an energy efficiency perspective[J]. IEEE Transactions on Vehicular Technology, 2014, 63(5):2336-2348.
[11] NG D W K, LO E S, SCHOBER R. Energy-efficient resource allocation in OFDMA systems with hybrid energy harvesting base station[J]. IEEE Transactions on Wireless Communications, 2013, 12(7):3412-3427.
[12] MESHKATI F, POOR H V, SCHWARTZ S C. Energy-efficient resource allocation in wireless networks[J]. IEEE Transactions on Communications, 2009, 57(11):3406-3414.
[13] LEITMANN G. On generalized stackelberg strategies[J]. Journal of Optimization Theory and Applications, 1978, 26(4):637-643.
[14] SCUTARI G, PALOMAR D P, FACCHINE F, et al. Convex optimization, game theory, and variational inequality theory[J]. IEEE Signal Processing Magazine, 2010, 27(3):35-49.
[15] BOYD S, VANDENBERGHE L. Convex Optimization[M]. New York:Cambridge University Press, 2009.
[16] BOYD S, XIAO L, MUTAPCIC A. Subgradient Methods[M]. San Francisco:Stanford University Press, 2004.
[1] 胡芹, 刘富春. 基于离散事件系统的云资源分配优化控制[J]. 广东工业大学学报, 2016, 33(01): 29-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!