广东工业大学学报 ›› 2018, Vol. 35 ›› Issue (06): 90-94.doi: 10.12052/gdutxb.180103

• • 上一篇    下一篇

城市湿地N2O排放通量特征研究——以广州市海珠湖湿地为例

饶欣1, 肖荣波2,3, 徐志伟2,3   

  1. 1. 中国地质大学(北京) 人文经管学院, 北京 100038;
    2. 广东工业大学 环境科学与工程学院, 广东 广州 510006;
    3. 广东省环境科学研究院, 广东 广州 510030
  • 收稿日期:2018-07-05 出版日期:2018-11-23 发布日期:2018-11-23
  • 通信作者: 肖荣波(1978-),男,教授,主要研究方向为生态规划与生态修复.Email:ecoxiaorb@163.com E-mail:ecoxiaorb@163.com
  • 作者简介:饶欣(1978-),女,博士研究生,主要研究方向资源开发利用与环境管理.
  • 基金资助:
    国家自然科学基金资助项目(31470703);国家科技支撑计划课题(2014BAC15B01);广东省应用型科技研发专项(2016B020240008)

A Study of the N2O Emissions from Urban Wetlands—Taking Haizhu Lake Wetland in Guangzhou as an Example

Rao Xin1, Xiao Rong-bo2,3, Xu Zhi-wei2,3   

  1. 1. School of Humanities and Economic Management, China University of Geosciences, Beijing 100038, China;
    2. School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    3. Guangdong Provincial Academy Environmental Science, Guangzhou 510030, China
  • Received:2018-07-05 Online:2018-11-23 Published:2018-11-23

摘要: N2O是3大主要温室气体之一,目前对湿地N2O研究主要集中于河口和自然湿地,而城市湿地由于受到人为的强烈干扰和集中管理,其N2O排放特征尚未得到充分认识和研究. 以广州市海珠湖城市湿地为例,通过静态箱-气相色谱法,研究2013年12月~2014年11月期间的美人蕉(Canna indica,CI)、野芋(Colocasia tonoimo,CT)、蓝花草(Aphelandra ruellia,AR)3种典型群落湿地的N2O排放通量季节性变化及相关环境因子. 结果表明:美人蕉、野芋、蓝花草3种植被群落在无水区N2O年平均通量分别为0.029 mg·m–2·h–1、0.089 mg·m–2·h–1、0.013 mg·m–2·h–1,在淹水区N2O年平均通量分别为0.016 mg·m–2·h–1、0.006 9 mg·m–2·h–1、0.022 mg·m–2·h–1,不同季节差异较为明显;水位和温度是影响N2O排放的显著性因子,植被群落类型影响并不显著,其中温度处于25~35 ℃时N2O排放通量最大.

关键词: 城市湿地, N2O排放, 水位, 湿地植物

Abstract: The objectives of this study are to investigate the fluxes of N2O from urban wetlands, and to find the related environmental factors. The enclosed static chamber-gas chromatography method is used to analyze the N2O fluxes of Canna indica (CI), Colocasia tonoimo (CT) and Aphelandra ruellia(AR) from December 2013 to November 2014 in the typical urban wetland of the Haizhu Lake in Guangzhou City. The results shows that the average annual fluxes of N2O in the water-free areas are 0.029 mg·m-2·h-1 for CI, 0.089 mg·m-2·h-1for CT, and 0.013 mg·m-2·h-1 for AR, and are 0.016 mg·m-2·h-1 for CI, 0.0069 mg·m-2·h-1for CT, 0.022 mg·m-2·h-1 for AR in the water areas. Differences in N2O fluxes between different seasons are obvious. Water level and temperature are significant factors affecting N2O emission, while the influence of different plants community type is not significant. The N2O emission flux goes to the largest when the temperature is at 25~35℃.

Key words: urban wetland, N2O emissions, hydraulic condition, wetland plants

中图分类号: 

  • X171
[1] IPCC. Climate change 2007:the physical science basis contribution of working group Ⅰ to the fourth assessment report of the intergovernmental panel on climate change[M]. New York:Cambridge University Press, 2007:749-766
[2] BOUWMAN A F. Soils and the Greenhouse Effect[M]. New York:John Wiley & Sons, 1990:61-127
[3] SCARONI A E, YE S, LINDAU C W, et al. Nitrous Oxide emissions from soils in Louisiana's Atchafalaya River Basin[J]. Wetlands, 2014, 34(3):545-554
[4] HUERTAS I E, FLECHA S, NAVARRO G, et al. Spatio-temporal variability and controls on methane and nitrous oxide in the Guadalquivir Estuary, Southwestern Europe[J]. Aquatic Sciences, 2018, 80(3):29
[5] SONG H, LIU X, YU W, et al. Seasonal and spatial variation of Nitrogen Oxide fluxes from human-disturbance coastal wetland in the Yellow River Estuary[J]. Wetlands, 2018:1-11
[6] WANG J L, ZHONG Z M, WANG Z H, et al. Soil C/P distribution characteristics of alpine steppe ecosystems in the Qinhai-Tibetan Plateau[J]. Acta Prataculturae Sinica, 2014, 23(2):9-19
[7] ZHAO P, DAI W A, MING-XIN D U, et al. Response of Amorpha fruiticosa planting to soil nutrients in the Tibetan Plateau[J]. Acta Prataculturae Sinica, 2014, 23(3):175-181
[8] 徐志伟, 肖荣波, 邓一荣, 等. 广州海珠湖城市湿地CO2通量特征[J]. 应用与环境生物学报, 2016, 22(1):13-19 XU Z W, XIAO R B, DENG Y R, et al. Characteristics of CO2 flux in urban wetlands of Haizhu Lake in Guangzhou[J]. Journal of Applied and Environmental Biology, 2016, 22(1):13-19
[9] MIELNICK P C, DUGAS W A. Soil CO2 flux in a tallgrass prairie[J]. Soil Biology & Biochemistry, 2000, 32(2):221-228
[10] 郑泽梅, 于贵瑞, 孙晓敏, 等. 涡度相关法和静态箱/气相色谱法在生态系统呼吸观测中的比较[J]. 应用生态学报, 2008, 19(2):290-298 ZHENG Z M, YU G R, SUN X M, et al. Comparison of vorticity correlation and static box/gas chromatography in respiration observation of ecosystems[J]. Chinese Journal of Applied Ecology, 2008, 19(2):290-298
[11] 刘惠, 赵平, 孙谷畴, 等. 华南丘陵区冬闲稻田二氧化碳、甲烷和氧化亚氮的排放特征[J]. 应用生态学报, 2007, 18(1):57-62 LIU H, ZHAO P, SUN G C, et al. Characteristics of CO2, CH4 and N2O emissions from winter idle rice fields in hilly areas of South China[J]. The Journal of Applied Ecology, 2007, 18(1):57-62
[12] 陈伟民, 黄祥飞. 湖泊生态系统观测方法[M]. 北京:中国环境科学出版社, 2005.
[13] NKONGLOLO N V, JOHNSON S, SCHMIDT K, et al. Greenhouse gases fluxes and soil thermal properties in a pasture in central Missouri[J]. 环境科学学报(英文版), 2010, 22(7):1029-1039
[14] 王金龙, 李艳红, 李发东. 博斯腾湖人工和天然芦苇湿地土壤CO2、CH4和N2O排放通量[J]. 生态学报, 2018, 38(2):668-677 WANG J L, LI Y H, LI F D. CO2, CH4 and N2O emission fluxes from artificial and natural reed wetlands in Bosten Lake[J]. Chinese Journal of Ecology, 2018, 38(2):668-677
[15] GRANLI T. Nitrous oxide from agriculture[J]. Norwegian Journal of Agricultural Sciences, 1994, 12(Suppl):11-28
[16] HOYLE F C, MURPHY D V, IRP F. Temperature and stubble management influence microbial CO2-C evolution and gross N transformation rates[J]. Soil Biology & Biochemistry, 2006, 38(1):71-80
[17] 黄树辉, 吕军. 区分土壤中硝化与反硝化对N2O产生贡献的方法[J]. 农业工程学报, 2005, 21(s1):48-51 HUANG S H, LYU J. A method for distinguishing nitrification and denitrification in soil from N2O production[J]. Journal of Agricultural Engineering, 2005, 21(s1):48-51
[18] REGINA K, NYKANEN H, SILVOLA J, et al. Fluxes of nitrous oxide from boreal peatlands as affected by peatland type, water table level and nitrification capacity[J]. Biogeochemistry, 1996, 35(3):401-418
[19] 朱晓艳, 宋长春, 郭跃东, 等. 三江平原泥炭沼泽湿地N2O排放通量及影响因子[J]. 中国环境科学, 2013, 33(12):2228-2234 ZHU X Y, SONG C C, GUO Y D, et al. N2O emission flux and impact factors of peat moist wetlands in Sanjiang Plain[J]. Chinese Journal of Environmental Science, 2013, 33(12):2228-2234
[20] 刘惠, 赵平, 孙谷畴, 等. 华南丘陵区冬闲稻田二氧化碳、甲烷和氧化亚氮的排放特征[J]. 应用生态学报, 2007, 18(1):57-62 LIU H, ZHAO P, SUN G C, et al. Characteristics of CO2, CH4 and N2O emissions from winter idle rice fields in hilly areas of South China[J]. The Journal of Applied Ecology, 2007, 18(1):57-62
[21] 郝庆菊, 王跃思, 宋长春, 等. 垦殖对沼泽湿地CH4和N2O排放的影响[J]. 生态学报, 2007, 27(8):3417-3426 HAO Q J, WANG Y S, SONG C C, et al. Effects of reclamation on CH4 and N2O emissions from swamp wetlands[J]. Acta Ecologica Sinica, 2007, 27(8):3417-3426
[22] WALKER J T, GERON C D, VOSE J M, et al. Nitrogen trace gas emissions from a riparian ecosystem in southern Appalachia[J]. Chemosphere, 2002, 49(10):1389-1398
[23] 宋长春, 张丽华, 王毅勇, 等. 淡水沼泽湿地CO2、CH4和N2O排放通量年际变化及其对氮输入的响应[J]. 环境科学, 2006, 27(12):2369-2375 SONG C C, ZHANG L H, WANG Y Y, et al. Interannual variations of CO2, CH4 and N2O emission fluxes in freshwater marsh wetlands and their responses to nitrogen inputs[J]. Chinese Journal of Environmental Science, 2006, 27(12):2369-2375
[24] 马维伟, 王辉, 李广, 等. 尕海湿地CH4、CO2和N2O通量特征初步研究[J]. 草业学报, 2015(8):1-10 MA W W, WANG H, LI G, et al. Preliminary study on flux characteristics of CH4, CO2 and N2O in Bohai wetland[J]. Acta Pratacultura Sinica Sinica, 2015(8):1-10
[25] 徐小锋, 宋长春, 宋霞. 小叶章生态系统根际土壤微生物及CO2、CH4、N2O动态[J]. 生态学报, 2005, 25(1):182-187 XU X F, SONG C C, SONG X. Linking of microorganisms to CO2, CH4, and N2O dynamics in Calamagrostis angustifolia rhizosphere soil[J]. Chinese Journal of Ecology, 2005, 25(1):182-187
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!