广东工业大学学报 ›› 2019, Vol. 36 ›› Issue (01): 63-67,80.doi: 10.12052/gdutxb.180037

• 综合研究 • 上一篇    下一篇

基于小波散射网络下的图像检索

文介华, 谭立辉   

  1. 广东工业大学 应用数学学院, 广东 广州 510520
  • 收稿日期:2018-03-08 出版日期:2019-01-25 发布日期:2018-12-29
  • 作者简介:文介华(1990-),男,硕士研究生,主要研究方向为深度学习和图像识别及处理. E-mail:277844284@qq.com
  • 基金资助:
    广东省高等学校优秀青年教师培养项目(Yq201460)

Image Retrieval Based on Wavelet Scattering Network

Wen Jie-hua, Tan Li-hui   

  1. School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2018-03-08 Online:2019-01-25 Published:2018-12-29

摘要: 小波散射卷积神经网络由于其优越的性能而被迅速、广泛地运用到图像、音频等领域.本文利用这种新型的网络结构提取图像的特征,结合相似度度量方法,实现该特征提取在图像检索方面的应用.此外,将小波散射网络得到的特征系数,以其均值和方差作为新的特征,实现大规模图像检索的降维.最后,利用实验算法对比验证了上述降维方法的可行性和优越性.

关键词: 小波散射, 图像检索, 大规模检索

Abstract: Due to superior performance of the wavelet scattering network, it is rapidly and widely used in the fields of image and audio. This new type of network structure is used to extract the features of the image and combines similarity measurement methods to achieve the application of this feature extraction in image retrieval. In addition, the eigenvalues obtained by the wavelet scattering network are taken as its new features, taking the mean value and the variance as the new features, so as to realize the dimensionality reduction of large-scale image retrieval. Finally, the experimental algorithm is used to verify the feasibility and superiority of the above dimensionality reduction method.

Key words: wavelet scattering, image retrieval, large scale retrieval

中图分类号: 

  • O235
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!