广东工业大学学报 ›› 2019, Vol. 36 ›› Issue (03): 80-82,98.doi: 10.12052/gdutxb.180109

• 综合研究 • 上一篇    下一篇

关于四元数系数多项式特殊根的研究

姜莲霞   

  1. 喀什大学 数学与统计学院, 新疆 喀什 844000
  • 收稿日期:2018-08-07 出版日期:2019-05-09 发布日期:2019-05-07
  • 作者简介:姜莲霞(1987-),女,助教,硕士,主要研究方向为代数与数论.
  • 基金资助:
    新疆维吾尔自治区自然科学基金资助项目(2017D01A13)

A Research on Special Roots of Quaternion Coefficient Polynomials

Jiang Lian-xia   

  1. College of Mathematics and Statistics, Kashi University, Kashi 844000, China
  • Received:2018-08-07 Online:2019-05-09 Published:2019-05-07

摘要: 探讨了四元数系数多项式Qt)的球形根、实根、孤立复根、纯虚数四元数根的集合,通过将这些集合对应于由Qt)确定的某些实(复)系数多项式的实(复)根集合,确定了Qt)在R+Rj和R+R+Rk中根的集合,得到的实(复)系数多项式根的计数和分类方法可用于四元数系数多项式根的计数和分类上.

关键词: 四元数, 多项式, 球形根, 孤立根, 复根

Abstract: In this research, the sets of spherical roots, real roots, isolated complex roots, pure imaginary quaternion roots and roots in R + R+ Rj and R + R+ Rk of a quaternion polynomial Q(t) are determined by corresponding these sets to the sets of real or complex roots of some real or complex polynomials determined by Q(t). Thus, the counting and classifying methods for such polynomials can be used for the counting and classifying of the aforementioned roots of quaternion polynomials.

Key words: quaternion, polynomial, spherical root, isolated root, complex root

中图分类号: 

  • O151
[1] 欧敏;. 有1的环R上的n元多项式的矩阵表示[J]. 广东工业大学学报, 2009, 26(2): 12-.
[2] 顾赫宁; . 粘弹性圆盘和梁的接触问题[J]. 广东工业大学学报, 1998, 15(1): 60-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!