广东工业大学学报 ›› 2019, Vol. 36 ›› Issue (03): 74-79.doi: 10.12052/gdutxb.180122

• 综合研究 • 上一篇    下一篇

带周期边界的时间分数阶扩散方程的差分格式

张会琴, 汪志波   

  1. 广东工业大学 应用数学学院, 广东 广州 510520
  • 收稿日期:2018-09-20 出版日期:2019-05-09 发布日期:2019-04-04
  • 通信作者: 汪志波(1987-),男,副教授,主要研究方向为微分方程数值解.E-mail:wzbmath@gdut.edu.cn E-mail:wzbmath@gdut.edu.cn
  • 作者简介:张会琴(1992-),女,硕士研究生,主要研究方向为微分方程数值解.
  • 基金资助:
    国家自然科学基金资助项目(11701103);广东省自然科学基金资助项目(2017A030310538);广东省青年拔尖人才项目(2017GC010379);广东省高校特色创新项目(2017KTSCX062);广东工业大学基金资助项目(220413131,220413550)

Finite Difference Schemes for Time Fractional Diffusion Equations with Periodic Boundary Conditions

Zhang Hui-qin, Wang Zhi-bo   

  1. School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2018-09-20 Online:2019-05-09 Published:2019-04-04

摘要: 鉴于分数阶方程的解析解实难求得,本文主要研究了带周期边界的时间分数阶扩散方程的有限差分方法,时间方向采用L2-1σ离散公式,空间方向采用二阶差分格式离散,数值格式整体可达到二阶精度.随后利用Fourier方法证明了有限差分格式的唯一可解性、稳定性和收敛性.最后用MATLAB语言对具体的模型进行了数值求解,数值实验能很好地印证理论结果.

关键词: 分数阶扩散方程, Fourier方法, 变系数, 稳定性, 收敛性

Abstract: Generally, the analytic solution for fractional differential equations is hard to obtain. The difference scheme of time fractional diffusion equations with periodic boundaries is mainly studied, adopting the L2-1σ formula in temporal direction, and the second order difference approximation in spatial direction. The proposed scheme can obtain second order accuracy globally. The unique solvability, stability and convergence of the proposed scheme are proved by the Fourier method. Finally, the specific fractional models are solved numerically by MATLAB language. Numerical experiments are carried out to support the theoretical results.

Key words: fractional diffusion equation, Fourier method, variable coefficients, stability, convergence

中图分类号: 

  • 35R11
[1] NIGMATULLIN R R. To the theoretical explanation of the "universal response"[J]. Physica Status Solidi, 1984, 123(2):739-745
[2] GORENFLO R, MAINARDI F, SCALAS E, et al. Fractional calculus and continuous-time finance Ⅲ:the diffusion limit[J]. Physica A Statistical Mechanics & Its Applications, 2000, 284(1-4):376-384
[3] 梅立泉, 李瑞, 李智. 三元期权定价问题的偏微分方程数值解[J]. 西安交通大学学报, 2006, 40(4):484-487 MEI L Q, LI R, LI Z. Numerical solutions of partial differential equations for trivariate option pricing[J]. Journal of Xi'an Jiaotong University, 2006, 40(4):484-487
[4] ZHANG H, LIU F, PHANIKUMAR M S, et al. A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model[J]. Computers & Mathematics with Applications, 2013, 66(5):693-701
[5] CAIN G, MEYER G H. Separation of variables for partial differential equations[M]. New York:Chapman and Hall, 2006.
[6] PODLUBNY I. Fractional differential equations[M]. San Diego:Academic Press, 1999.
[7] SUN Z, WU X. A fully discrete difference scheme for a diffusion-wave system[J]. Applied Numerical Mathematics, 2006, 56(2):193-209
[8] LIN Y, XU C. Finite difference/spectral approximations for the time-fractional diffusion equation[J]. Journal of Computational Physics, 2007, 225(2):1533-1552
[9] CUI M. Compact finite difference method for the fractional diffusion equation[J]. Journal of Comp-utational Physics, 2009, 228(20):7792-7804
[10] REN J, SUN Z, ZHAO X. Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions[J]. Journal of Computational Physics, 2013, 232(1):456-467
[11] WANG Z, VONG S. A compact difference scheme for a two dimensional nonlinear fractional Klein-Gordon equation in polar coordinates[J]. Computers & Mathematics with Applications, 2016, 71(12):2524-2540
[12] FENG Q, MENG F. Finite difference scheme with spatial fourth-order accuracy for a class of time fractional parabolic equations with variable coefficient[J]. Advances in Difference Equations, 2016, 2016(1):305
[13] YUSTE S B, ACEDO L. An explicit finite difference method and a new von neumann-type stability analysis for fractional diffusion equations[J]. SIAM Journal on Numerical Analysis, 2005, 42(5):1862-1874
[14] ZHUANG P, LIU F, ANH V, et al. New solution and analytical techniques of the implicit numerical method for the anomalous sub-diffusion equation[J]. SIAM Journal on Numerical Analysis, 2008, 46(2):1079-1095
[15] ALIKHANOV A A. A new difference scheme for the time fractional diffusion equation[J]. Journal of Computational Physics, 2015, 280(C):424-438
[16] VONG S, LYU P, CHEN X, et al. High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives[J]. Numerical Algorithms, 2016, 72(1):195-210
[17] ZHAO X, XU Q. Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient[J]. Applied Mathematical Modelling, 2014, 38(15-16):3848-3859
[18] VONG S, WANG Z. A high order compact finite difference scheme for time fractional Fokker-Planck equations[J]. Applied Mathematics Letters, 2015, 43:38-43
[19] CUI M. Compact exponential scheme for the time fractional convection-diffusion reaction equation with variable coefficients[J]. Journal of Computational Physics, 2015, 280(2):143-163
[20] 杜瑞连, 梁宗旗. 右侧Caputo分数阶导数的L2-1插值逼近[J]. 集美大学学报(自然科学版), 2017, 22(4):68-74 DU R L, LIANG Z Q. Interpolation approximation of the right side of the caputo fractional derivative[J]. Journal of Jimei University (Natural Science), 2017, 22(4):68-74
[1] 岑达康, 汪志波. 分数阶捕食者—食饵模型的变分迭代法[J]. 广东工业大学学报, 2022, 39(02): 62-65.
[2] 刘雪, 刘忠明, 席跃宾, 王守娟, 孔凡功. 木质素基超疏水涂层的制备及其应用性能研究[J]. 广东工业大学学报, 2022, 39(01): 34-40,134.
[3] 唐浩怡, 彭红云. 三维趋化系统全局弱解的存在性和渐近稳定性[J]. 广东工业大学学报, 2022, 39(01): 93-98.
[4] 周民华, 张文进, 潘春阳. 镓离子掺杂的CsPbBr3量子点的制备及其性能研究[J]. 广东工业大学学报, 2021, 38(02): 83-87.
[5] 黄慧敏, 郭承军. 一类脉冲随机微分方程解的稳定性[J]. 广东工业大学学报, 2020, 37(06): 56-62.
[6] 梁仕华, 陈俊涛, 林焕生, 冯德銮, 龚星, 罗庆姿. 水泥固化淤泥废弃土作为填土材料的试验研究[J]. 广东工业大学学报, 2020, 37(02): 102-106.
[7] 刘陈霖, 郑三强, 韩晓卓. 具有Allee效应捕食-竞争系统的时空动态分析[J]. 广东工业大学学报, 2019, 36(06): 38-44.
[8] 汪翔, 刘立凡, 王志红, 漆文光. 优质地表水源突发污染后长距离输水水质稳定性研究[J]. 广东工业大学学报, 2019, 36(03): 99-102,110.
[9] 刘铭炜, 禹智涛, 贺绍华. 基于统一理论的钢管混凝土拱桥稳定性分析[J]. 广东工业大学学报, 2018, 35(06): 63-68.
[10] 庄小兰, 王琦. 一阶时滞微分方程欧拉法的动力性[J]. 广东工业大学学报, 2018, 35(01): 46-49.
[11] 赵腾起, 朱燕娟, 李文华, 简修文, 罗洁, 张伟, 张春华. 掺杂氢氧化镍晶相及其结构稳定性与碳酸钠用量的关系研究[J]. 广东工业大学学报, 2016, 33(04): 56-61.
[12] 黄明辉. 多时滞的非线性微分方程的渐近稳定性[J]. 广东工业大学学报, 2016, 33(01): 62-66.
[13] 吴龙梁, 黄崧, 经晶, 樊露菲. 尾矿坝特殊工况动力稳定性分析[J]. 广东工业大学学报, 2015, 32(2): 28-31.
[14] 徐林, 宋常修. 一类三阶时滞微分方程的稳定性和有界性[J]. 广东工业大学学报, 2015, 32(1): 128-132.
[15] 王琳, 卢钻仪, 周志权, 黄泽滨, 温营浩, 林逢春. 比较原理和无限时滞随机泛函微分方程解的稳定性[J]. 广东工业大学学报, 2015, 32(04): 88-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!