广东工业大学学报 ›› 2019, Vol. 36 ›› Issue (03): 74-79.doi: 10.12052/gdutxb.180122
张会琴, 汪志波
Zhang Hui-qin, Wang Zhi-bo
摘要: 鉴于分数阶方程的解析解实难求得,本文主要研究了带周期边界的时间分数阶扩散方程的有限差分方法,时间方向采用L2-1σ离散公式,空间方向采用二阶差分格式离散,数值格式整体可达到二阶精度.随后利用Fourier方法证明了有限差分格式的唯一可解性、稳定性和收敛性.最后用MATLAB语言对具体的模型进行了数值求解,数值实验能很好地印证理论结果.
中图分类号:
[1] NIGMATULLIN R R. To the theoretical explanation of the "universal response"[J]. Physica Status Solidi, 1984, 123(2):739-745 [2] GORENFLO R, MAINARDI F, SCALAS E, et al. Fractional calculus and continuous-time finance Ⅲ:the diffusion limit[J]. Physica A Statistical Mechanics & Its Applications, 2000, 284(1-4):376-384 [3] 梅立泉, 李瑞, 李智. 三元期权定价问题的偏微分方程数值解[J]. 西安交通大学学报, 2006, 40(4):484-487 MEI L Q, LI R, LI Z. Numerical solutions of partial differential equations for trivariate option pricing[J]. Journal of Xi'an Jiaotong University, 2006, 40(4):484-487 [4] ZHANG H, LIU F, PHANIKUMAR M S, et al. A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model[J]. Computers & Mathematics with Applications, 2013, 66(5):693-701 [5] CAIN G, MEYER G H. Separation of variables for partial differential equations[M]. New York:Chapman and Hall, 2006. [6] PODLUBNY I. Fractional differential equations[M]. San Diego:Academic Press, 1999. [7] SUN Z, WU X. A fully discrete difference scheme for a diffusion-wave system[J]. Applied Numerical Mathematics, 2006, 56(2):193-209 [8] LIN Y, XU C. Finite difference/spectral approximations for the time-fractional diffusion equation[J]. Journal of Computational Physics, 2007, 225(2):1533-1552 [9] CUI M. Compact finite difference method for the fractional diffusion equation[J]. Journal of Comp-utational Physics, 2009, 228(20):7792-7804 [10] REN J, SUN Z, ZHAO X. Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions[J]. Journal of Computational Physics, 2013, 232(1):456-467 [11] WANG Z, VONG S. A compact difference scheme for a two dimensional nonlinear fractional Klein-Gordon equation in polar coordinates[J]. Computers & Mathematics with Applications, 2016, 71(12):2524-2540 [12] FENG Q, MENG F. Finite difference scheme with spatial fourth-order accuracy for a class of time fractional parabolic equations with variable coefficient[J]. Advances in Difference Equations, 2016, 2016(1):305 [13] YUSTE S B, ACEDO L. An explicit finite difference method and a new von neumann-type stability analysis for fractional diffusion equations[J]. SIAM Journal on Numerical Analysis, 2005, 42(5):1862-1874 [14] ZHUANG P, LIU F, ANH V, et al. New solution and analytical techniques of the implicit numerical method for the anomalous sub-diffusion equation[J]. SIAM Journal on Numerical Analysis, 2008, 46(2):1079-1095 [15] ALIKHANOV A A. A new difference scheme for the time fractional diffusion equation[J]. Journal of Computational Physics, 2015, 280(C):424-438 [16] VONG S, LYU P, CHEN X, et al. High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives[J]. Numerical Algorithms, 2016, 72(1):195-210 [17] ZHAO X, XU Q. Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient[J]. Applied Mathematical Modelling, 2014, 38(15-16):3848-3859 [18] VONG S, WANG Z. A high order compact finite difference scheme for time fractional Fokker-Planck equations[J]. Applied Mathematics Letters, 2015, 43:38-43 [19] CUI M. Compact exponential scheme for the time fractional convection-diffusion reaction equation with variable coefficients[J]. Journal of Computational Physics, 2015, 280(2):143-163 [20] 杜瑞连, 梁宗旗. 右侧Caputo分数阶导数的L2-1插值逼近[J]. 集美大学学报(自然科学版), 2017, 22(4):68-74 DU R L, LIANG Z Q. Interpolation approximation of the right side of the caputo fractional derivative[J]. Journal of Jimei University (Natural Science), 2017, 22(4):68-74 |
[1] | 岑达康, 汪志波. 分数阶捕食者—食饵模型的变分迭代法[J]. 广东工业大学学报, 2022, 39(02): 62-65. |
[2] | 刘雪, 刘忠明, 席跃宾, 王守娟, 孔凡功. 木质素基超疏水涂层的制备及其应用性能研究[J]. 广东工业大学学报, 2022, 39(01): 34-40,134. |
[3] | 唐浩怡, 彭红云. 三维趋化系统全局弱解的存在性和渐近稳定性[J]. 广东工业大学学报, 2022, 39(01): 93-98. |
[4] | 周民华, 张文进, 潘春阳. 镓离子掺杂的CsPbBr3量子点的制备及其性能研究[J]. 广东工业大学学报, 2021, 38(02): 83-87. |
[5] | 黄慧敏, 郭承军. 一类脉冲随机微分方程解的稳定性[J]. 广东工业大学学报, 2020, 37(06): 56-62. |
[6] | 梁仕华, 陈俊涛, 林焕生, 冯德銮, 龚星, 罗庆姿. 水泥固化淤泥废弃土作为填土材料的试验研究[J]. 广东工业大学学报, 2020, 37(02): 102-106. |
[7] | 刘陈霖, 郑三强, 韩晓卓. 具有Allee效应捕食-竞争系统的时空动态分析[J]. 广东工业大学学报, 2019, 36(06): 38-44. |
[8] | 汪翔, 刘立凡, 王志红, 漆文光. 优质地表水源突发污染后长距离输水水质稳定性研究[J]. 广东工业大学学报, 2019, 36(03): 99-102,110. |
[9] | 刘铭炜, 禹智涛, 贺绍华. 基于统一理论的钢管混凝土拱桥稳定性分析[J]. 广东工业大学学报, 2018, 35(06): 63-68. |
[10] | 庄小兰, 王琦. 一阶时滞微分方程欧拉法的动力性[J]. 广东工业大学学报, 2018, 35(01): 46-49. |
[11] | 赵腾起, 朱燕娟, 李文华, 简修文, 罗洁, 张伟, 张春华. 掺杂氢氧化镍晶相及其结构稳定性与碳酸钠用量的关系研究[J]. 广东工业大学学报, 2016, 33(04): 56-61. |
[12] | 黄明辉. 多时滞的非线性微分方程的渐近稳定性[J]. 广东工业大学学报, 2016, 33(01): 62-66. |
[13] | 吴龙梁, 黄崧, 经晶, 樊露菲. 尾矿坝特殊工况动力稳定性分析[J]. 广东工业大学学报, 2015, 32(2): 28-31. |
[14] | 徐林, 宋常修. 一类三阶时滞微分方程的稳定性和有界性[J]. 广东工业大学学报, 2015, 32(1): 128-132. |
[15] | 王琳, 卢钻仪, 周志权, 黄泽滨, 温营浩, 林逢春. 比较原理和无限时滞随机泛函微分方程解的稳定性[J]. 广东工业大学学报, 2015, 32(04): 88-91. |
|