广东工业大学学报 ›› 2019, Vol. 36 ›› Issue (05): 43-47.doi: 10.12052/gdutxb.180137
刘艳艳, 杨理平
Liu Yan-yan, Yang Li-ping
摘要: 在锥度量空间中不要求映射的非减性条件下,获得了c-距离意义下映射对的公共不动点定理;另外在不要求锥的正规性和映射的连续性的条件下,证明了c-距离下映射对公共不动点的存在性和唯一性.所得结果改进和推广了已有文献中的相关结论.
中图分类号:
[1] HUANG L G, ZHANG X. Cone metric spaces and fixed point theorems of contractive mappings[J]. J Math. Anal. Appl, 2007, 332(2):1468-1476 [2] 史晓棠, 谷峰. 锥度量空间中映像的一个新的不动点定理[J]. 杭州师范大学学报, 2012, 11(2):162-168 SHI X T, GU F. A new common fixed point the-orem for the mappings in cone metric spaces[J]. Journal of Hangzhou Normal University, 2012, 11(2):162-168 [3] 陈盼, 孔伟铭, 杨理平. 锥度量空间中四个自映射的公共不动点定理[J]. 广东工业大学学报, 2014, 31(4):79-84 CHEN P, KONG W M, YANG L P. Common fixed point theorems for four maps in the cone metric spaces[J]. Journal of Guangdong University of Technology, 2014, 31(4):79-84 [4] M. ABBAS, G. JUNGCK Common fixed point results for noncommuting mappings without continuity in cone metric spaces[J]. J Math Anal Appl, 2008, 341(1):416-420 [5] 孔伟铭, 杨理平. 锥度量空间中扩张映射对的公共不动点定理[J]. 广东工业大学学报, 2013, 30(1):76-80 KONG W M, YANG L P. Common fixed point theorems of expansive mapping pairs in the cone metric space[J]. Journal of Guangdong University of Technology, 2013, 30(1):76-80 [6] CHO YEOL JE, REZA SAADATI, WANG S H. Common fixed point theorems on generalized distance in ordered cone metric spaces[J]. Computers and Mathematics with Applications, 2011, 61(4):1254-1260 [7] AYDI, H, FELHI, A, MUSTAFA, Z, et al. Strong coupled fixed points for couplings via c-distance[J]. Journal of Mathematical Analysis, 2018, 9(3):28-37 [8] WUTIPHOL SINTUNAVARAT, YEOL JE CHO, POOM KUMAM. Common fixed point theorems for c-distance in ordered cone metric spaces[J]. Computers and Mathematics with Applications, 2011, 62(4):1969-1978 [9] 韩艳, 张建元. 锥度量空间中c-距离下非连续映射的不动点定理[J]. 应用泛函分析学报, 2017, 19(4):424-429 HAN Y, ZHANG J Y. Fixed point results under c-distance for non-continuous mapping in cone metric spaces[J]. Acta Analysis Functional Applicata, 2017, 19(4):424-429 [10] YANG Y O, CHOI H J. Fixed point theorems in ordered cone metric spaces[J]. Journal of Nonlinear Science and Applications, 2016, 9(6):4571-4579 [11] HAN Y, XU S Y. Some new theorems on c-distance without continuity in Cone Metric Spaces over banach algebras[J]. Journal of Function Spaces, 2018 [12] 韩艳, 张建元. 锥度量空间中c-距离下的不动点定理[J]. 纯粹数学与应用数学, 2015, 31(6):581-587 HAN Y, ZHANG J Y. Fixed point results under c-distance in cone metric spaces[J]. Pure and Applied Mathematics, 2015, 31(6):581-587 [13] 巨小维, 顾贞. 锥度量空间中一类扩张映射的公共不动点定理[J]. 西南大学学报, 2014, 36(11):112-116 JU X W, GU Z. A class of fixed point thorems for expanding mappings in cone metric spaces[J]. Journal of Southwest University, 2014, 36(11):112-116 [14] HUANG H P, RADENOVIC STOJAN, DOSE-NOVIC, TATJANA. Some common fixed point theorems on c-distance in cone metric spaces over banach algebras[J]. Applied and Computation Mathematics, 2015, 14(2):180-193 [15] DOREVI MOMILO, DORIC DRAGAN, KADE-KBURG ZORAN, et al. Fixed point results under c-distance in tvs-cone metric spaces[J]. Fixed Point Theory and Applications, 2011 [16] 张石生. 不动点理论及应用[M]. 重庆:重庆出版社, 1984:2-28. |
[1] | 洪育敏, 杨理平. 具有Banach代数的锥度量空间中的公共不动点定理[J]. 广东工业大学学报, 2021, 38(01): 75-81. |
[2] | 陈盼, 孔伟铭, 杨理平. 锥度量空间中四个自映射的公共不动点定理[J]. 广东工业大学学报, 2014, 31(4): 79-84. |
[3] | 孔伟铭,杨理平. 锥度量空间中扩张映象对的公共不动点定理[J]. 广东工业大学学报, 2013, 30(1): 76-80. |
[4] | 杨理平; . 广义2-距离空间中映象列的公共不动点[J]. 广东工业大学学报, 2002, 19(4): 92-97. |
[5] | 杨理平; . 一类压缩型映象序列的公共不动点定理[J]. 广东工业大学学报, 1998, 15(4): 71-75. |
[6] | 杨理平; . 一类交换映象的公共不动点定理[J]. 广东工业大学学报, 1998, 15(2): 107-109. |
|