广东工业大学学报 ›› 2019, Vol. 36 ›› Issue (05): 43-47.doi: 10.12052/gdutxb.180137

• 综合研究 • 上一篇    下一篇

锥度量空间中c-距离的公共不动点定理

刘艳艳, 杨理平   

  1. 广东工业大学 应用数学学院, 广东 广州 510520
  • 收稿日期:2018-10-23 出版日期:2019-08-21 发布日期:2019-08-06
  • 作者简介:刘艳艳(1995-),女,硕士研究生,主要研究方向为非线性泛函分析.
  • 基金资助:
    国家自然科学基金资助项目(61374081);教育部人文社科规划基金资助项目(14YJAZH095);广东省自然科学基金资助项目(2015A030313485);广州市科学计划项目(201707010494)

Common Fixed Point Theorems for c-distances in Cone Metric Spaces

Liu Yan-yan, Yang Li-ping   

  1. School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2018-10-23 Online:2019-08-21 Published:2019-08-06

摘要: 在锥度量空间中不要求映射的非减性条件下,获得了c-距离意义下映射对的公共不动点定理;另外在不要求锥的正规性和映射的连续性的条件下,证明了c-距离下映射对公共不动点的存在性和唯一性.所得结果改进和推广了已有文献中的相关结论.

关键词: 锥度量空间, c-距离, 公共不动点

Abstract: In this paper, the common fixed point theorem for mapping pairs under c-distance is obtained in the cone metric space, The results do not require nondecreasing in the condition. In addition, the condition of the results neither require the normality for cone nor require the continuity for mapping, Furthermore, the existence and uniqueness of the mapping to the common fixed point under c-distance is proved. The results improve and generalize the relevant conclusions in the existing literature.

Key words: cone metric space, c-distance, common fixed point

中图分类号: 

  • O177.91
[1] HUANG L G, ZHANG X. Cone metric spaces and fixed point theorems of contractive mappings[J]. J Math. Anal. Appl, 2007, 332(2):1468-1476
[2] 史晓棠, 谷峰. 锥度量空间中映像的一个新的不动点定理[J]. 杭州师范大学学报, 2012, 11(2):162-168 SHI X T, GU F. A new common fixed point the-orem for the mappings in cone metric spaces[J]. Journal of Hangzhou Normal University, 2012, 11(2):162-168
[3] 陈盼, 孔伟铭, 杨理平. 锥度量空间中四个自映射的公共不动点定理[J]. 广东工业大学学报, 2014, 31(4):79-84 CHEN P, KONG W M, YANG L P. Common fixed point theorems for four maps in the cone metric spaces[J]. Journal of Guangdong University of Technology, 2014, 31(4):79-84
[4] M. ABBAS, G. JUNGCK Common fixed point results for noncommuting mappings without continuity in cone metric spaces[J]. J Math Anal Appl, 2008, 341(1):416-420
[5] 孔伟铭, 杨理平. 锥度量空间中扩张映射对的公共不动点定理[J]. 广东工业大学学报, 2013, 30(1):76-80 KONG W M, YANG L P. Common fixed point theorems of expansive mapping pairs in the cone metric space[J]. Journal of Guangdong University of Technology, 2013, 30(1):76-80
[6] CHO YEOL JE, REZA SAADATI, WANG S H. Common fixed point theorems on generalized distance in ordered cone metric spaces[J]. Computers and Mathematics with Applications, 2011, 61(4):1254-1260
[7] AYDI, H, FELHI, A, MUSTAFA, Z, et al. Strong coupled fixed points for couplings via c-distance[J]. Journal of Mathematical Analysis, 2018, 9(3):28-37
[8] WUTIPHOL SINTUNAVARAT, YEOL JE CHO, POOM KUMAM. Common fixed point theorems for c-distance in ordered cone metric spaces[J]. Computers and Mathematics with Applications, 2011, 62(4):1969-1978
[9] 韩艳, 张建元. 锥度量空间中c-距离下非连续映射的不动点定理[J]. 应用泛函分析学报, 2017, 19(4):424-429 HAN Y, ZHANG J Y. Fixed point results under c-distance for non-continuous mapping in cone metric spaces[J]. Acta Analysis Functional Applicata, 2017, 19(4):424-429
[10] YANG Y O, CHOI H J. Fixed point theorems in ordered cone metric spaces[J]. Journal of Nonlinear Science and Applications, 2016, 9(6):4571-4579
[11] HAN Y, XU S Y. Some new theorems on c-distance without continuity in Cone Metric Spaces over banach algebras[J]. Journal of Function Spaces, 2018
[12] 韩艳, 张建元. 锥度量空间中c-距离下的不动点定理[J]. 纯粹数学与应用数学, 2015, 31(6):581-587 HAN Y, ZHANG J Y. Fixed point results under c-distance in cone metric spaces[J]. Pure and Applied Mathematics, 2015, 31(6):581-587
[13] 巨小维, 顾贞. 锥度量空间中一类扩张映射的公共不动点定理[J]. 西南大学学报, 2014, 36(11):112-116 JU X W, GU Z. A class of fixed point thorems for expanding mappings in cone metric spaces[J]. Journal of Southwest University, 2014, 36(11):112-116
[14] HUANG H P, RADENOVIC STOJAN, DOSE-NOVIC, TATJANA. Some common fixed point theorems on c-distance in cone metric spaces over banach algebras[J]. Applied and Computation Mathematics, 2015, 14(2):180-193
[15] DOREVI MOMILO, DORIC DRAGAN, KADE-KBURG ZORAN, et al. Fixed point results under c-distance in tvs-cone metric spaces[J]. Fixed Point Theory and Applications, 2011
[16] 张石生. 不动点理论及应用[M]. 重庆:重庆出版社, 1984:2-28.
[1] 洪育敏, 杨理平. 具有Banach代数的锥度量空间中的公共不动点定理[J]. 广东工业大学学报, 2021, 38(01): 75-81.
[2] 陈盼, 孔伟铭, 杨理平. 锥度量空间中四个自映射的公共不动点定理[J]. 广东工业大学学报, 2014, 31(4): 79-84.
[3] 孔伟铭,杨理平. 锥度量空间中扩张映象对的公共不动点定理[J]. 广东工业大学学报, 2013, 30(1): 76-80.
[4] 杨理平; . 广义2-距离空间中映象列的公共不动点[J]. 广东工业大学学报, 2002, 19(4): 92-97.
[5] 杨理平; . 一类压缩型映象序列的公共不动点定理[J]. 广东工业大学学报, 1998, 15(4): 71-75.
[6] 杨理平; . 一类交换映象的公共不动点定理[J]. 广东工业大学学报, 1998, 15(2): 107-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!