广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (04): 91-97.doi: 10.12052/gdutxb.190090
臧小豪, 刘起发, 胡蒙蒙, 常媛媛, 肖清炜, 周渭
Zang Xiao-hao, Liu Qi-fa, Hu Meng-meng, Chang Yuan-yuan, Xiao Qing-wei, Zhou Wei
摘要: 神经炎症贯穿神经退行性疾病的整个发病过程。在正常的生理状态下, 神经炎症有助于神经系统损伤的修复, 但当炎症反应过度时则会造成细胞的损伤, 加速神经退行性疾病的恶化。当神经炎症发生时, 小胶质细胞会异常活化。这使它们成为反映小胶质细胞病理生理学改变的一种敏感而特异的定量指标。本文主要通过核素和可见光成像技术对神经炎症靶点进行检测, 介绍了近年来TSPO靶点分子探针的研究进展, 包括核素成像和荧光成像。最后展望了神经炎症分子探针的研究方向, 对于开发更清晰、方便、经济的神经炎症分子探针有一定的借鉴意义。
中图分类号:
[1] FREEMAN J M, MCKHANN G M. Degenerative disease of the central nervous system [J]. Advances in Pediatrics, 1969, 16(1): 121-127 [2] CHECK E. Nerve inflammation halts trial for Alzheimer's drug [J]. Nature, 2002, 415(6871): 462-469 [3] 李冬梅, 万春丽, 李继承. 小动物活体成像技术研究进展[J]. 中国生物医学工程学报, 2009, 28(6): 916-921 LI D M, WAN C L, LI J C. Development of small living animal imaging technology [J]. Chinese Journal of Biomedical Engineering, 2009, 28(6): 916-921 [4] 朱淼鑫, 姚明. 小动物活体成像技术的应用[J]. 中国比较医学杂志, 2011, 21(3): 1-5 ZHU M X, YAO M. In vivo imaging technology in small animal [J]. Chinese Journal of Comparative Medicine, 2011, 21(3): 1-5 [5] 周伟, 尹端沚, 汪勇先. 小动物PET[J]. 核技术, 2006, 29(3): 207-213 ZHOU W, YI D Z, WANG Y X. Small animal PET [J]. Nuclear Techniques, 2006, 29(3): 207-213 [6] HAGOOLY A, ROSSIN R, WELCH M J. Small molecule receptors as imaging targets [J]. Handbook of Experimental Pharmacology, 2008, 185(2): 93-102 [7] FRANC B L, ACTON P D, MARI C, et al. Small-animal SPECT and SPECT/CT: important tools for preclinical investigation [J]. Journal of Nuclear Medicine, 2008, 49(10): 1651-1663 [8] LEE H, VILLACRESES N E, RAPOPORT S I, et al. In vivo imaging detects a transient increase in brain arachidonic acid metabolism: a potential marker of neuroinflammation [J]. Journal of Neurochemistry, 2010, 91(4): 936-945 [9] ALAM MM, LEE J, LEE S Y. Recent progress in the development of TSPO PET ligands for neuroinflammation imaging in neurological diseases [J]. Nuclear Medicine & Molecular Imaging, 2017, 51(4): 1-14 [10] VASSILIOS P, LAURENT L. Translocator protein (18 kDa) TSPO: an emerging therapeutic target in neurotrauma [J]. Experimental neurology, 2009, 219(1): 283-294 [11] HERMANN S, STARSICHOVA A, WASCHKAUB, et al. Non-FDG imaging of atherosclerosis: will imaging of MMPs assess plaque vulnerability [J]. Journal of nuclear cardiology, 2012, 19(3): 609-617 [12] TURKHEIMER F E, EDISON P, PAVESE N, et al. Reference and target region modeling of [11C]-(R)-PK11195 brain studies [J]. Journal of Nuclear Medicine, 2007, 48(1): 158-167 [13] KUMAR A, MUZIK O, SHANDAL V, et al. Evaluation of age-related changes in translocator protein (TSPO) in human brain using 11 C-[R]-PK11195 PET [J]. Journal of Neuroinflammation, 2012, 9(1): 232-235 [14] AURELIJA J. Kinetic analysis and test-retest variability of the radioligand[C] (R)-PK11195 binding to TSPO in the human brain-a PET study in control subjects [J]. Ejnmmi Research, 2012, 2(1): 11-15 [15] MANNING H C, SMITH S M, SEXTON M, et al. A peripheral benzodiazepine receptor targeted agent for in vitro imaging and screening [J]. Bioconjugate Chemistry, 2006, 17(3): 735-740 [16] MATARRESE M, MORESCO R M, CAPPELLI A, et al. Labeling and evaluation of N-[11C]methylated quinoline-2-carboxamides as potential radioligands for visualization of peripheral benzodiazepine receptors [J]. Journal of Medicinal Chemistry, 2001, 44(4): 579-585 [17] ZANOTTIF P, ZHANG Y, JENKO K J, et al. Synthesis and evaluation of translocator 18 kDaprotein (TSPO) positron emissiontomography (PET) radioligands with low binding sensitivity to human single nucleotide polymorphism rs6971 [J]. ACS Chemical Neuroscience, 2014, 5(10): 963-971 [18] MILITE C, BARRESI E, DA P E, et al. Exploiting the 4-phenylquinazoline scaffold for the development of high affinity fluorescent probes for the translocator protein (TSPO) [J]. Journal of Medicinal Chemistry, 2017, 11(5): 283-289 [19] ROMEO E, AUTA J, KOZIKOWSKI A P, et al. 2-Aryl-3-indoleacetamides (FGIN-1): a new class of potent and specific ligands for the mitochondrial DBI receptor (MDR) [J]. Journal of Pharmacology & Experimental Therapeutics, 1992, 262(3): 971-985 [20] KOZIKOWSKI A P, KOTOULA M, MA D, et al. Synthesis and biology of a 7-nitro-2,1,3-benzoxadiazol-4-yl derivative of 2-phenylindole-3-acetamide: a fluorescent probe for the peripheral-type benzodiazepine receptor [J]. Journal of Medicinal Chemistry, 1997, 40(16): 2435-2439 [21] PRIMOFIORE G, SETTIMO F D, TALIANI S, et al. N, N-Dialkyl-2-phenylindol-3-ylglyoxylamides, a new class of potent and selective ligands at the peripheral renzodiazepine receptor [J]. Journal of Medicinal Chemistry, 2004, 47(7): 1852-1855 [22] TALIANI S, SIMORINI F, SERGIANNI V, et al. New fluorescent 2-phenylindolglyoxylamide derivatives as probes targeting the peripheral-type benzodiazepine receptor? Design, synthesis, and biological evaluation [J]. Journal of Medicinal Chemistry, 2007, 50(2): 404-407 [23] OKUBO T, YOSHIKAWA R, CHAKI S, et al. Design, synthesis and structure-affinity relationships of aryloxyanilide derivatives as novel peripheral benzodiazepine receptor ligands [J]. Bioorganic & Medicinal Chemistry, 2004, 12(2): 423-438 [24] PROBST K C, IZQUIERDO D, BIRD J. Strategy for improved[C]DAA1106 radiosynthesis and in vivo peripheral benzodiazepine receptor imaging using microPET, evaluation of[C]DAA1106 [J]. Nuclear Medicine & Biology, 2007, 34(4): 439-446 [25] MAEDA J, SUHARA T, ZHANG M R, et al. Novel peripheral benzodiazepine receptor ligand[11C]DAA1106 for PET: an imaging tool for glial cells in the brain [J]. Synapse, 2004, 52(4): 283-291 [26] LAQUINTANA V, DENORA N, LOPEDOTA A, et al. N-Benzyl-2-(6,8-dichloro-2-(4-chlorophenyl)imidazo[1,2-a]pyridin-3-yl)-N-(6-(7-nitrobenzo[c][1,2,5]oxadiazol-4-ylamino) hexyl) acetamide as a new fluorescentprobe for peripheral benzodiazepine receptor and microglial cell visualization [J]. Bioconjugate Chemistry, 2007, 18(5): 1397-1407 [27] BROWN A K, FUJITA M, FUJIMURA Y, et al. Radiation dosimetry and biodistribution in monkey and man of[11C]-PBR28: A PET radioligand to image inflammation [J]. Journal of Nuclear Medicine, 2007, 48(12): 2072-2079 [28] AKSHAY N, MATTIA V, XU X. Test-retest analysis of a non-invasive method of quantifying[11C]-PBR28 binding in Alzheimer’s disease [J]. Ejnmmi Research, 2016, 6(1): 72-79 [29] SELLERI S, BRUNI F, COSTAGLI C, et al. 2-Arylpyrazolo[1,5-a] pyrimidin-3-yl acetamides. New potent and selective peripheral benzodiazepine receptor ligands [J]. Bioorganic & Medicinal Chemistry, 2001, 9(10): 2661-2671 [30] LATROFA A, TRAPANI G, FRANCO M, et al. Synthesis of the[3H] labelled potent and selective peripheral benzodiazepine receptor ligand CB 34 [J]. Journal of Labelled Compounds & Radiopharmaceuticals, 2001, 44(7): 521-528 [31] MATTNER F, KATSIFIS A, STAYKOVA M, et al. Evaluation of a radiolabelled peripheral benzodiazepine receptor ligand in the central nervous system inflammation of experimental autoimmune encephalomyelitis: a possible probe for imaging multiple sclerosis [J]. European Journal of Nuclear Medicine & Molecular Imaging, 2005, 32(5): 557-563 [32] JENSEN P, FENG L, LAW I, et al. TSPO imaging in glioblastoma multiforme: A direct comparison between[123I]-CLINDE SPECT, [18F]-FET PET, and gadolinium-enhanced MR imaging [J]. Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine, 2015, 56(9): 1386-1390 [33] FOSS C A, HARPER J S, WANG H, et al. Noninvasive molecular imaging of tuberculosis-associated inflammation with radioiodinated DPA-713 [J]. Journal of Infectious Diseases, 2013, 208(12): 2067-2074 [34] JAMES M L, FULTON RR, VERCOULLIE J, et al. DPA-714, a new translocator protein-specific ligand: synthesis, radiofluorination, and pharmacologic characterization [J]. Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine, 2008, 49(5): 814-822 [35] SARDAML, ALSACJM, BOISGARD R, et al. Comparison of 18F-fluoro-deoxy-glucose, 18F-fluoro-methyl-choline, and[18F]-DPA714 for positron-emission tomography imaging of leukocyte accumulation in the aortic wall of experimental abdominal aneurysms [J]. Journal of Vascular Surgery, 2012, 56(3): 765-773 [36] TANG D, MCKINLEY E T, HIGHT M R, et al. Synthesis and structure-activity relationships of 5,6,7-substituted pyrazolopyrimidines: discovery of a novel TSPO PET ligand for cancer imaging [J]. Journal of Medicinal Chemistry, 2013, 56(8): 165-173 [37] LI J, SMITH J A, DAWSON E S, et al. Optimized translocator protein ligand for optical molecular imaging and screening [J]. Bioconjugate Chemistry, 2017, 28(4): 1016-1023 [38] ENDRES C J, POMPER M G, JAMES M, et al. Initial evaluation of[11C]-DPA-713, a novel TSPO PET ligand, in humans [J]. Journal of Nuclear Medicine, 2009, 50(8): 1276-1282 [39] KITA A, KOHAYAKAWA H, KINOSHITA T, et al. Antianxiety and antidepressant-like effects of AC-5216, a novel mitochondrial benzodiazepine receptor ligand [J]. British Journal of Pharmacology, 2004, 142(7): 1059-1072 [40] ZHANG M R, KUMATA K, MAEDA J, et al. [11C]-AC-5216: A novel PET ligand for peripheral benzodiazepine receptors in the primate brain [J]. Journal of Nuclear Medicine, 2007, 48(11): 1853-1861 [41] RUPPRECHT R, RAMMES G, ESER D, et al. Translocator protein (18 kD) as target for anxiolytics without benzodiazepine-like side effects [J]. Science, 2009, 325(5939): 490-493 [42] WAGNER S, BREYHOLZ H J, HÖLTKE C, et al. A new 18F-labelled derivative of the MMP inhibitor CGS 27023A for PET: radiosynthesis and initial small-animal PET studies [J]. Applied Radiation & Isotopes Including Data Instrumentation & Methods for Use in Agriculture Industry & Medicine, 2009, 67(4): 606-610 [43] HAIDER A, SPINELLI F, HERDE A M, et al. Evaluation of 4-oxo-quinoline-based CB2 PET radioligands in R6/2 chorea huntington mouse model and human ALS spinal cord tissue [J]. European Journal of Medicinal Chemistry, 2018, 14(5): 746-752 [44] CHU W, CHEPETAN A, ZHOU D, et al. Development of a PET radiotracer for noninvasive imaging of the reactive oxygen species, superoxide, in vivo [J]. Organic & Biomolecular Chemistry, 2014, 12(25): 4421-4431 [45] PRABHAKARAN J, MAJO V J, SIMPSON N R, et al. Synthesis of[11C] celecoxib: a potential PET probe for imaging COX‐2 expression [J]. Journal of Labelled Compounds & Radiopharmaceuticals, 2005, 48(12): 887-895 [46] BRECKWOLDT M O, CHEN J W, STANGENBERG L, et al. Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(47): 185-189 |
[1] | 谢玲娜, 韩萍, 杜志云. 银耳多糖超声波提取工艺优化及抗BV2细胞炎症的作用研究[J]. 广东工业大学学报, 2021, 38(02): 94-98. |
|