广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (04): 84-90.doi: 10.12052/gdutxb.190138
胡陆国1, 胡正发1,2, 肖扬1, 王银海1, 赵慧1
Hu Lu-guo1, Hu Zheng-fa1,2, Xiao Yang1, Wang Yin-hai1, Zhao Hui1
摘要: 设计了一种通过乙醇淬火来修饰纳米氧化铜表面的简单方法。首先将纳米氧化铜加热至800 ℃, 然后立即浸入无水乙醇中淬火。通过罗丹明B的光催化降解表明, 在紫外-可见光照射下, 表面修饰后的纳米氧化铜比修饰前的纳米氧化铜具有更好的光催化性能。电子顺磁共振测试表明, 通过快速的无水乙醇淬火, 氧化铜中出现了高浓度的氧空位, 这些氧空位有效地提升了氧化铜的光催化性能; X射线衍射和光电子能谱测试表明, 通过无水乙醇淬火, 氧化铜中出现了氧化亚铜和铜, 这可能会形成CuO-Cu2O异质结以及Cu-CuO/Cu2O肖特基异质结, 促进电荷-空穴分离, 有效地提升改性氧化铜的光催化性能。实验表明溶剂淬火方法能有效地修饰金属氧化物的表面, 增加氧化物中的表面氧空位, 甚至形成异质结, 提高材料的表面活性。
中图分类号:
[1] LEGRINI O, OLIVEROS E, BRAUN AM. Photochemical processes for water treatment [J]. Chemical Reviews, 1993, 93(2): 671-698 [2] 陈志良, 彭晓春, 杨兵, 等. 有色金属冶炼污染场地土壤和地下水污染特征研究[J]. 广东工业大学学报, 2013, 30(2): 119-122 CHEN Z L, PENG X C, YANG B, et al. Characteristics of soil and groundwater pollution in non-ferrous metal smelting plants [J]. Journal of Guangdong University of Technology, 2013, 30(2): 119-122 [3] LU N, ZHANG Z Y, DONG B, et al. Direct evidence of IR-driven hot electron transfer in metal-free plasmonic W18O49/Carbon heterostructures for enhanced catalytic H2 production [J]. Applied Catalysis B: Environmental, 2018, 233: 19-25 [4] KRISHNAMOORTHY K, MOHAN R, KIM S. Graphene oxide as a photocatalytic material [J]. Applied Physics Letters, 2011, 98(24): 244101 [5] 许巍, 袁斌, 孙水裕, 等. 城镇污染河流修复技术研究进展[J]. 广东工业大学学报, 2004, 21(4): 85-90 XU W, YUAN B, SUN S Y, et al. Progress of water pollution remediation techniques in city and town river [J]. Journal of Guangdong University of Technology, 2004, 21(4): 85-90 [6] ANI L J, AKPAN U G, HAMEED B H, et al. Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2-and ZnO-based photocatalysts: Recent development [J]. Journal of Cleaner Production, 2018, 205: 930-954 [7] LIU J, LI Y, SU B L, et al. Tailoring CuO nanostructures for enhanced photocatalytic property [J]. Journal of Colloid and Interface Science, 2012, 384(1): 1-9 [8] ZHU J, QIAN X F. From 2-D CuO nanosheets to 3-D hollow nanospheres: interface-assisted synthesis, surface photovoltage properties and photocatalytic activity [J]. Journal of Solid State Chemistry, 2010, 183(7): 1632-1639 [9] VASEEM M, UMAR A, HAHN Y B, et al. Flower-shaped CuO nanostructures: Structural, photocatalytic and XANES studies [J]. Catalysis Communications, 2008, 10(1): 11-16 [10] TAN Y B, JIA Z Q, SUN J Y, et al. Controllable synthesis of hollow copper oxide encapsulated into N-doped carbon nanosheets as high-stability anodes for lithium-ion batteries [J]. Journal of Materials Chemistry A, 2017, 5(46): 24139-24144 [11] REZAIEA A B, MONTAZER M, RAD M M, et al. Environmentally friendly low cost approach for nano copper oxide functionalization of cotton designed for antibacterial and photocatalytic applications [J]. Journal of Cleaner Production, 2018, 204: 425-436 [12] DUAN L P, YIN S S, LI M Q, et al. The synthesis of dandelion-like CuO nanoflowers and photocatalytic degradation of RhB [J]. Colloid and Polymer Science, 2017, 295(10): 1797-1803 [13] YANG F, ZHANG X F, CUI L S, et al. Characteristics and supercapacitive performance of nanoporous bamboo leaf-like CuO [J]. Chemical Physics Letters, 2018, 691: 366-372 [14] NAKATE U T, HAHN Y B, SUH E K, et al. Nano-bitter gourd like structured CuO for enhanced hydrogen gas sensor application [J]. International Journal of Hydrogen Energy, 2018, 43(50): 22705-22714 [15] YANG L F, CHU D P, WANG L M. CuO core-shell nanostructures: Precursor-mediated fabrication and visible-light induced photocatalytic degradation of organic pollutants [J]. Powder Technology, 2016, 287: 346-354 [16] GOU X F, SUN S D, YANG Z M, et al. A very facile strategy for the synthesis of ultrathin CuO nanorods towards non-enzymatic glucose sensing [J]. New Journal of Chemistry, 2018, 42(8): 6364-6369 [17] LI R, CHAN K C, Lu Z P, et al. Synthesis of well-aligned CuO nanowire array integrated with nanoporous CuO network for oxidative degradation of methylene blue [J]. Corrosion Science, 2017, 126: 37-43 [18] XIAO S N, PAN D L, ZHANG D Q, et al. Porous CuO nanotubes/graphene with sandwich architecture as high-performance anodes for lithium-ion batteries [J]. Nanoscale, 2016, 8(46): 19343-19351 [19] PHIWDANG K, SUPHANKIJ S, MEKPRASART W, et al. Synthesis of CuO nanoparticles by precipitation method using different precursors [J]. Energy Procedia, 2013, 34: 740-745 [20] LIM Y F, CHUA C S, LEE C J J, et al. Sol-gel deposited Cu2O and CuO thin films for photocatalytic water splitting [J]. Physical Chemistry Chemical Physics, 2014, 16 (47): 25928-25934 [21] XIAO H M, FU S Y, ZHU L P, et al. Controlled synthesis and characterization of CuO nanostructures through a facile hydrothermal route in the presence of sodium citrate [J]. European Journal of Inorganic Chemistry, 2007, 2007(14): 1966-1971 [22] TOBOONSUNG B, SINGJAI P. Formation of CuO nanorods and their bundles by an electrochemical dissolution and deposition process [J]. Journal of Alloys and Compounds, 2011, 509(10): 4132-4137 [23] JIN Z L, ZHANG X J, LU G X, et al. 5.1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation [J]. Catalysis Communications, 2007, 8(8): 1267-1273 [24] SONG X M, YUAN C X, ZHANG Y, et al. ZnO/CuO photoelectrode with n-p heterogeneous structure for photoelectrocatalytic oxidation of formaldehyde [J]. Applied Surface Science, 2018, 455: 181-186 [25] BENEDETTO A D, LANDI G, LISI L. CO reactive adsorption at low temperature over CuO/CeO2 structured catalytic monolith [J]. International Journal of Hydrogen Energy, 2017, 42(17): 12262-12275 [26] CHEN S H, XIAO Y, WANG Y H, et al. Ethanol-quenching modified the surface environment of titanium dioxide for visible light-assisted hydrogen production [J]. Catalysis Science & Technology, 2019, 9 (16): 4222-4225 [27] XIAO Y, CHEN S H, WANG Y H, et al. Ethanol-quenching introduced oxygen vacancies in strontium titanate surface and the enhanced photocatalytic activity [J]. Nanomaterials, 2019, 9(6): 883 [28] LIU J L, WEN M, WU Q S, et al. Assembly of TiO2-on-Cu2O nanocubes with narrow-band Cu2O-induced visible-light-enhanced photocatalytic activity [J]. Chem Plus Chem, 2014, 79(2): 298-303 [29] YAN J Q, LI L D, GONG J L, et al. Tungsten oxide single crystal nanosheets for enhanced multichannel solar light harvesting [J]. Advanced Materials, 2015, 27(9): 1580-1586 [30] MOTAUNG D E, MAKGWANE P R, RAY S S. Induced ferromagnetic and gas sensing properties in ZnO-nanostructures by altering defect concentration of oxygen and zinc vacancies [J]. Materials Letters, 2015, 139: 475-479 [31] WENCKA M, JELEN A, KHARE V, et al. Magnetic and EPR study of ferric green rust- and ferrihydrite-coated sand prepared by different synthesis routes [J]. Journal of Physics D: Applied Physics, 2009, 42(24): 245301 [32] TAHIR D, TOUGAARD S. Electronic and optical properties of Cu, CuO and Cu2O studied by electron spectroscopy [J]. Journal of Physics: Condensed Matter, 2012, 24(17): 175002 [33] GHIJSEN J, TJENG L H, VAN ELP J, et al. Electronic structure of Cu2O and CuO [J]. Physical Review B, 1988, 38(16): 11322-11330 [34] MARIOT J M, BARNOLE V, HAGUE C F, et al. Local electronic structure of Cu2O, CuO and YBa2Cu3O7-δ [J]. Z Phys B-Condensed Matte, 1989, 75(1): 1-9 [35] JILANI A, ABDEL-WAHAB M S, OTHMAN M H D, et al. Sputtered CuO mono-phase thin films: structural, compositional and spectroscopic linear/nonlinear optical characteristics [J]. Optik, 2017, 144: 207-218 [36] PAN X, YANG M Q, FU X, et al. Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications [J]. Nanoscale, 2013, 5(9): 3601-3614 [37] YU J C, YU J G, HO W, et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders [J]. Chemistry of Materials, 2002, 14(9): 3808-3816 [38] XIA T, ZHANG Y, MUROWCHICK J, et al. Vacuum-treated titanium dioxide nanocrystals: optical properties, surface disorder, oxygen vacancy, and photocatalytic activities [J]. Catalysis Today, 2014, 225: 2-9 [39] XU Y, SCHOONEN M A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals [J]. American Mineralogist, 2000, 85(3-4): 543-556 |
[1] | 龙慧, 魏子乔, 罗思瑶, 董华锋, 陈传盛. In2Se3纳米片改性的GO/WS2/Mg-ZnO复合材料光催化性能的研究[J]. 广东工业大学学报, 2022, 39(04): 107-112. |
[2] | 曹怡婷, 王俏, 许泽涛, 吕冠衡. 金属有机框架/铋基复合材料的光催化技术应用研究进展[J]. 广东工业大学学报, 2022, 39(04): 113-120. |
[3] | 王家玺, 罗莉, 贠蕊, 李小芬, 王银海, 张伟. 溶胶-凝胶法制备BiFeO3:Y3+纳米粉末及其光催化性能研究[J]. 广东工业大学学报, 2020, 37(01): 42-47. |
[4] | 岳经龙,唐新桂. 钛酸锶铅陶瓷电阻开关效应研究[J]. 广东工业大学学报, 2016, 33(06): 34-37. |
[5] | 陈锋, 刘秋香. (Ba 0.8Sr 0.2) 1-1.5x BixTiO3陶瓷的弥散相变和高温介电异常研究[J]. 广东工业大学学报, 2016, 33(05): 69-. |
[6] | 傅李鹏, 张国庆, 杨承昭. 负载TiO2工程化光催化水处理器降解活性黑GR实验研究[J]. 广东工业大学学报, 2010, 27(1): 28-32. |
[7] | 吕松; 孙英杰; 袁斌; 梁康玉; . 焦炭负载TiO2光催化降解阳离子艳红染料废水的研究[J]. 广东工业大学学报, 2007, 24(2): 11-14. |
|