广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (02): 73-82.doi: 10.12052/gdutxb.200118
肖天华1,2, 刘荣涛1, 庞贻宇1, 李达1, 刘佳1, 闵永刚1,2
Xiao Tian-hua1,2, Liu Rong-tao1, Pang Yin-yu1, Li Da1, Liu Jia1, Min Yong-gang1,2
摘要: 聚醚醚酮(Polyetheretherketone, PEEK)是一种半结晶的合成聚合物, 与传统修复骨缺损的生物材料相比, PEEK具有良好的生物相容性、化学稳定性、透光性和弹性模量与正常人骨相似等优点, 已被广泛应用于骨科移植。但PEEK的生物惰性使其在临床应用中存在局限性, 目前通过表面改性赋予PEEK材料表面生物活性是解决这个问题的有效途径。本文综述了近年来PEEK表面改性方法的研究现状和发展方向, 其中着重介绍了物理改性、化学改性以及涂层改性, 并分析了不同改性技术对于提高生物相容性的作用, 最后指出PEEK表面改性骨移植材料在医学领域中继续发展需要解决的问题, 要充分研究其在体内的每一阶段身体所做出的反应, 并保证其表面处理在整个生命周期内不会退化或磨损正常组织。
中图分类号:
[1] BUCK E, LI H, CERRUTI M. Surface modification strategies to improve the osseointegration of poly(etheretherketone) and its composites [J]. Macromolecular Bioscience, 2019, 20(2): 1900271. [2] MISHRA S, CHOWDHARY R. PEEK materials as an alternative to titanium in dental implants: a systematic review [J]. Clinical Implant Dentistry and Related Research, 2019, 21(1): 208-222. [3] KURTZ S M, DEVINE J N. PEEK biomaterials in trauma, orthopedic, and spinal implants [J]. Biomaterials, 2007, 28(32): 4845-4869. [4] PARK H, LEE J, MOON S, et al. The efficacy of the synthetic interbody cage and grafton for anterior cervical fusion [J]. Spine (Phila Pa 1976), 2009, 34(17): E591-E595. [5] KOH Y, PARK K, LEE J, et al. Total knee arthroplasty application of polyetheretherketone and carbon-fiber-reinforced polyetheretherketone: a review [J]. Materials Science and Engineering: C, 2019, 100: 70-81. [6] TOTH J M, WANG M, ESTES B T, et al. Polyetheretherketone as a biomaterial for spinal applications [J]. Biomaterials, 2006, 27(3): 324-334. [7] LU T, WEN J, QIAN S, et al. Enhanced osteointegration on tantalum-implanted polyetheretherketone surface with bone-like elastic modulus [J]. Biomaterials, 2015, 51: 173-183. [8] CHEN M, OUYANG L, LU T, et al. Enhanced bioactivity and bacteriostasis of surface fluorinated polyetheretherketone [J]. ACS Applied Materials & Interfaces, 2017, 9(20): 16824-16833. [9] WEN J, LU T, WANG X, et al. In vitro and in vivo evaluation of silicate-coated polyetheretherketone fabricated by electron beam evaporation [J]. ACS Applied Materials & Interfaces, 2016, 8(21): 13197-13206. [10] ALOTAIBI N, NAUDI K, CONWAY D, et al. The current state of PEEK implant osseointegration and future perspectives: a systematic review [J]. European Cells and Materials, 2020, 40: 1-20. [11] MA R, TANG T. Current strategies to improve the bioactivity of PEEK [J]. International Journal of Molecular Sciences, 2014, 15(4): 5426-5445. [12] BRIEM D, STRAMETZ S, SCHRÖODER K, et al. Response of primary fibroblasts and osteoblasts to plasma treated polyetheretherketone (PEEK) surfaces [J]. Journal of Materials Science: Materials in Medicine, 2005, 16(7): 671-677. [13] HA S W, KIRCH M, BIRCHLER F, et al. Surface activation of polyetheretherketone (PEEK) and formation of calcium phosphate coatings by precipitation [J]. Journal of Materials Science: Materials in Medicine, 1997, 8(11): 683-690. [14] AWAJA F, ZHANG S, JAMES N, et al. Enhanced autohesive bonding of polyetheretherketone (PEEK) for biomedical applications using a methane/oxygen plasma treatment [J]. Plasma Processes and Polymers, 2010, 7(12): 1010-1021. [15] AWAJA F, BAX D V, ZHANG S, et al. Cell adhesion to PEEK treated by plasma immersion ion implantation and deposition for active medical implants [J]. Plasma Processes and Polymers, 2012, 9(4): 355-362. [16] WASER-ALTHAUS J, SALAMON A, WASER M, et al. Differentiation of human mesenchymal stem cells on plasma-treated polyetheretherketone [J]. Journal of Materials Science: Materials in Medicine, 2014, 25(2): 515-525. [17] YU X, IBRAHIM M, LIU Z, et al. Biofunctional Mg coating on PEEK for improving bioactivity [J]. Bioactive Materials, 2018, 3(2): 139-143. [18] KRATOCHVÍL J, ŠTĚRBA J, LIESKOVSKÁ J, et al. Antibacterial effect of Cu/C:F nanocomposites deposited on PEEK substrates [J]. Materials Letters, 2018, 230: 96-99. [19] HUANG R Y M, SHAO P, BURNS C M, et al. Sulfonation of poly(ether ether ketone)(PEEK): kinetic study and characterization [J]. Journal of Applied Polymer Science, 2001, 82(11): 2651-2660. [20] ZHAO Y, WONG H M, WANG W, et al. Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone [J]. Biomaterials, 2013, 34(37): 9264-9277. [21] OUYANG L, ZHAO Y, JIN G, et al. Influence of sulfur content on bone formation and antibacterial ability of sulfonated PEEK [J]. Biomaterials, 2016, 83: 115-126. [22] ZHENG Y, LIU L, XIAO L, et al. Enhanced osteogenic activity of phosphorylated polyetheretherketone via surface-initiated grafting polymerization of vinylphosphonic acid [J]. Colloids and Surfaces B: Biointerfaces, 2019, 173: 591-598. [23] FRISTRUP C J, JANKOVA K, HVILSTED S. Hydrophilization of poly(ether ether ketone) films by surface-initiated atom transfer radical polymerization [J]. Polymer Chemistry, 2010, 1(10): 1696. [24] SUN Z, OUYANG L, MA X, et al. Controllable and durable release of BMP-2-loaded 3D porous sulfonated polyetheretherketone (PEEK) for osteogenic activity enhancement [J]. Colloids Surf B Biointerfaces, 2018, 171: 668-674. [25] SHAH N J, HYDER M N, MOSKOWITZ J S, et al. Surface-mediated bone tissue morphogenesis from tunable nanolayered implant coatings [J]. Sci Transl Med, 2013, 5(191): 183r-191r. [26] SADAT-SHOJAI M, KHORASANI M, DINPANAH-KHOSHDARGI E, et al. Synthesis methods for nanosized hydroxyapatite with diverse structures [J]. Acta Biomaterialia, 2013, 9(8): 7591-7621. [27] LEE J H, JANG H L, LEE K M, et al. In vitro and in vivo evaluation of the bioactivity of hydroxyapatite-coated polyetheretherketone biocomposites created by cold spray technology [J]. Acta Biomaterialia, 2013, 9(4): 6177-6187. [28] DONG T, DUAN C, WANG S, et al. Multifunctional surface with enhanced angiogenesis for improving long-term osteogenic fixation of poly(ether ether ketone) implants [J]. ACS Applied Materials & Interfaces, 2020, 12(13): 14971-14982. [29] QIU J, GENG H, WANG D, et al. Layer-number dependent antibacterial and osteogenic behaviors of graphene oxide electrophoretic deposited on titanium [J]. ACS Applied Materials & Interfaces, 2017, 9(14): 12253-12263. [30] YAN J, WANG C, LI K, et al. Enhancement of surface bioactivity on carbon fiber-reinforced polyether ether ketone via graphene modification [J]. International Journal of Nanomedicine, 2018, 13: 3425-3440. [31] OUYANG L, DENG Y, YANG L, et al. Graphene-oxide-decorated microporous polyetheretherketone with superior antibacterial capability and in vitro osteogenesis for orthopedic implant [J]. Macromolecular Bioscience, 2018, 18(6): 1800036. [32] OUYANG L, QI M, WANG S, et al. Osteogenesis and antibacterial activity of graphene oxide and dexamethasone coatings on porous polyetheretherketone via polydopamine-assisted chemistry [J]. Coatings, 2018, 8(6): 203. [33] KWON G, KIM H, GUPTA K C, et al. Enhanced tissue compatibility of polyetheretherketone disks by dopamine-mediated protein immobilization [J]. Macromolecular Research, 2018, 26(2): 128-138. [34] XU X, LI Y, WANG L, et al. Triple-functional polyetheretherketone surface with enhanced bacteriostasis and anti-inflammatory and osseointegrative properties for implant application [J]. Biomaterials, 2019, 212: 98-114. [35] ZHU Y, CAO Z, PENG Y, et al. Facile surface modification method for synergistically enhancing the biocompatibility and bioactivity of poly(ether ether ketone) that induced osteodifferentiation [J]. ACS Applied Materials & Interfaces, 2019, 11(31): 27503-27511. [36] ZHANG J, CAI L, WANG T, et al. Lithium doped silica nanospheres/poly(dopamine) composite coating on polyetheretherketone to stimulate cell responses, improve bone formation and osseointegration [J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2018, 14(3): 965-976. [37] LU T, LIU X, QIAN S, et al. Multilevel surface engineering of nanostructured TiO2 on carbon-fiber-reinforced polyetheretherketone [J]. Biomaterials, 2014, 35(22): 5731-5740. [38] WANG X, LU T, WEN J, et al. Selective responses of human gingival fibroblasts and bacteria on carbon fiber reinforced polyetheretherketone with multilevel nanostructured TiO2 [J]. Biomaterials, 2016, 83: 207-218. [39] WANG H, LU T, MENG F, et al. Enhanced osteoblast responses to poly ether ether ketone surface modified by water plasma immersion ion implantation [J]. Colloids and Surfaces B: Biointerfaces, 2014, 117: 89-97. [40] LU T, LI J, QIAN S, et al. Enhanced osteogenic and selective antibacterial activities on micro-/nano-structured carbon fiber reinforced polyetheretherketone [J]. Journal of Materials Chemistry B, 2016, 4(17): 2944-2953. [41] LU T, QIAN S, MENG F, et al. Enhanced osteogenic activity of poly ether ether ketone using calcium plasma immersion ion implantation [J]. Colloids and Surfaces B: Biointerfaces, 2016, 142: 192-198. [42] GAN K, LIU H, JIANG L, et al. Bioactivity and antibacterial effect of nitrogen plasma immersion ion implantation on polyetheretherketone [J]. Dental Materials, 2016, 32(11): e263-e274. [43] WYSZOGRODZKA G, MARSZALEK B, GIL B, et al. Metal-organic frameworks: mechanisms of antibacterial action and potential applications [J]. Drug Discov Today, 2016, 21(6): 1009-1018. [44] LIU X, GAN K, LIU H, et al. Antibacterial properties of nano-silver coated PEEK prepared through magnetron sputtering [J]. Dental Materials, 2017, 33(9): e348-e360. [45] LIU W, LI J, CHENG M, et al. A surface-engineered polyetheretherketone biomaterial implant with direct and immunoregulatory antibacterial activity against methicillin-resistant staphylococcus aureus [J]. Biomaterials, 2019, 208: 8-20. |
[1] | 张然, 梁亮, 宛焱, 胡龙. 纳米银水性抗菌木器涂料的研制[J]. 广东工业大学学报, 2015, 32(04): 40-45. |
[2] | 郑正男, 谭俊杰, 吴帅, 丁利君, 郑希. 单宁酸的体外抑菌作用及其影响因素[J]. 广东工业大学学报, 2015, 32(04): 46-51. |
[3] | 代春迎, 谭竹钧, 黎子蔚. 诱导前后地鳖血淋巴抗菌活性的研究[J]. 广东工业大学学报, 2014, 31(1): 136-140. |
[4] | 袁国正. 复方中草药在超声波药物耦合剂中的抗菌效果[J]. 广东工业大学学报, 2011, 28(4): 74-78. |
[5] | 袁子龙1, 张伟1, 赵韦人1, 唐露新2, 盛霞1, 谢民强3. 热疗用磁流体的热磁稳定性研究[J]. 广东工业大学学报, 2011, 28(3): 62-65. |
[6] | 余双平; 邓淑华; 黄慧民; 周立清; 漆小龙; . 超微粉体的表面改性技术进展[J]. 广东工业大学学报, 2003, 20(2): 70-76. |
[7] | 郭鹏; 陈敏; 陈中豪; . 高效降解木质素优势混合菌的诱变选育研究[J]. 广东工业大学学报, 1997, 14(4): 34-39. |
|