广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (05): 48-51.doi: 10.12052/gdutxb.200107

• • 上一篇    下一篇

基于复值稀疏贝叶斯的Hilbert变换计算方法

谢伟翔, 莫艳   

  1. 广东工业大学 应用数学学院,广东 广州 510520
  • 收稿日期:2020-08-24 出版日期:2021-09-10 发布日期:2021-07-13
  • 通信作者: 莫艳(1986–),女,副教授,主要研究方向为计算及应用调和分析,E-mail:marvel-2008@163.com E-mail:marvel-2008@163.com
  • 作者简介:谢伟翔(1994–),男,硕士研究生,主要研究方向为计算及应用调和分析
  • 基金资助:
    国家自然科学基金资助项目(11801095)

A Complex Sparse Bayesian Method to Compute Hilbert Transform

Xie Wei-xiang, Mo Yan   

  1. School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2020-08-24 Online:2021-09-10 Published:2021-07-13

摘要: Hilbert变换是信号分析及信号处理中的重要工具, 由于Cauchy核在原点的奇性增加了Hilbert变换计算的难度。最近, 研究者们首次提出了利用复解析的方法来计算Hilbert变换的自适应傅里叶分解(Adaptive Fourier Decomposition, AFD)方法。AFD方法通过参数化的Szegö核的线性组合来自适应逼近解析信号从而求得原始实值信号的Hilbert变换。与传统计算Hilbert变换的方法相比, AFD方法可以给出逼近的解析表达式且适用范围更广。然而AFD方法在根据最大选择原理选择参数时需要穷尽单位开圆盘的所有点, 这是非常耗时的。稀疏贝叶斯学习是近年来机器学习研究的热点, 基于Szegö核的复值稀疏贝叶斯学习算法能提供稀疏的有理逼近。本文将提出基于Szegö核的复值稀疏贝叶斯学习算法来近似计算Hilbert变换, 该方法具有AFD方法的优点且可以不需要参数控制进行迭代优化, 运算速度快。实验结果表明, 所提方法是有效的。

关键词: 复值稀疏贝叶斯, Szeg?核, Hilbert变换, 解析函数

Abstract: Hilbert transform is an important tool for signal analysis and processing. Due to the singularity of the Cauchy kernel at the origin, the calculation of the Hilbert transform becomes very difficult. Recently, researchers firstly propose the AFD (Adaptive Fourier Decomposition) method which uses complex analysis to calculate the Hilbert transform. The AFD method adaptively approximates the analytical signal through the linear combination of the parameterized Szegö kernel to obtain original signals' Hilbert transform. Compared with the traditional method, the AFD method can give approximate analytical expressions and thus has a wider application. However, when using the principle of maximum selection to select parameters, the AFD method needs to exhaust all points of the unit disk which is time-consuming. Sparse Bayesian learning has been a hot spot in machine learning research in recent years. The Szegö kernel-based complex sparse Bayesian learning algorithm can provide a sparse rational approximation. A complex sparse Bayesian learning algorithm will be proposed based on the Szegö kernel to calculate the Hilbert transform. This method has the same advantages as the AFD method, and an iterative optimization can be performed without parameter control. The calculation speed of the proposed method is fast. Experimental results show that the proposed method is effective.

Key words: complex sparse Bayesian learning, Szeg? kernel, Hilbert transform, analytic function

中图分类号: 

  • O242.2
[1] ZHOU C, YANG L, LIU Y, et al. A novel method for computing the Hilbert transform with Haar multiresolution approximation [J]. Journal of Computational and Applied Mathematics, 2009, 223: 585-579.
[2] MICCHELLI C A, XU Y S, YU B. On computing with the Hilbert spline transform [J]. Advances in Computational Mathematics, 2013, 38(3): 623-646.
[3] MO Y, QIAN T, MAI W X, et al. The AFD methods to compute Hilbert transform [J]. Applied Mathematics Letters, 2015, 45: 18-24.
[4] 杨婷, 滕少华. 改进的贝叶斯分类方法在电信客户流失中的研究与应用[J]. 广东工业大学学报, 2015, 32(3): 67-72.
YANG T, TENG S H. Research and application of improved Bayes algorithm for the telecommunication customer churn [J]. Journal of Guangdong University of Technology, 2015, 32(3): 67-72.
[5] TIPPING M E. The relevance vector machine[C]//Advances in Neural Information Processing Systems. MIT: DBLP, 2000: 652-658.
[6] WU Q S, ZHANG Y D, AMIN M G, et al. Complex multitask Bayesian compressive sensing[C]//IEEE International Conference on Acoustics. Florence: SSP, 2014: 3375-3379.
[7] GARNETT J B. Bounded analytic functions[M]. New York: Academic Press, 1981: 27-45.
[1] 尤秀英; 王福龙; . 下侧二重Dirichlet级数与L-Stieltjes积分的特殊级[J]. 广东工业大学学报, 2003, 20(2): 84-89.
[2] 尤秀英; . 下侧二重随机Dirichlet级数的收敛性与增长性[J]. 广东工业大学学报, 2001, 18(3): 85-91.
[3] 王莉萍; . 超定椭圆型方程组的边值问题[J]. 广东工业大学学报, 2000, 17(1): 92-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!