广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (01): 93-98.doi: 10.12052/gdutxb.200148
唐浩怡, 彭红云
Tang Hao-yi, Peng Hong-yun
摘要: 主要研究了一类抛物−双曲型系统在不连续初值下全局弱解的适定性和大时间行为。该系统是利用Cole-Hopf变换从描述肿瘤血管生成的三维PDE-ODE (Partial Differential Equations-Ordinary Differential Equations )趋化模型转换而来的。本文在不连续初值条件下, 证明了当时间趋于无穷时抛物−双曲型系统的解收敛于常数稳态解。
中图分类号:
[1] DENG C, LI T. Well-posedness of a 3D parabolic-hyperbolic Keller-Segel system in the Sobolev space framework [J]. Journal of Differential Equations, 2014, 257(5): 1311-1332. [2] WANG Z A, XIANG Z, YU P. Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis [J]. Journal of Differential Equations, 2016, 260(3): 2225-2258. [3] GRANERO-BELINCHÓN R. Global solutions for a hyperbolic-parabolic system of chemotaxis [J]. Journal of Mathematical Analysis and Applications, 2017, 449(1): 872-883. [4] HOU Q Q, LIU C J, WANG Y G, et al. Stability of boundary layers for a viscous hyperbolic system arising from chemotaxis: one dimensional case [J]. SIAM Journal on Mathematical Analysis, 2018, 50(3): 3058-3091. [5] CORRIAS L, PERTHAME B, ZAAG H. A chemotaxis model motivated by angiogenesis [J]. Comptes Rendus Mathématique Académie des Sciences Paris, 2003, 336(2): 141-146. [6] LEVINE H A, SLEEMAN B D. A system of reaction diffusion equations arising in the theory of reinforced random walks [J]. SIAM Journal on Applied Mathematics, 1997, 57(3): 683-730. [7] MEI M, PENG H, WANG Z A. Asymptotic profile of a parabolic-hyperbolic system with boundary effect arising from tumor angiogenesis [J]. Journal of Differential Equations, 2015, 259(10): 5168-51,91. [8] GUO J, XIAO J X, ZHAO H J, et al. Global solutions to a hyperbolic-parabolic coupled system with large initial data[J]. Acta Mathematica Scientia, 2009, 29(3): 629-641. [9] LI D, PAN R, ZHAO K. Quantitative decay of a hybrid type chemotaxis model with large data [J]. Nonlinearity, 2015, 28: 2181-2210. [10] MARTINEZ V, WANG Z A, ZHAO K. Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology [J]. Indiana University Mathematics Journal, 2018, 67(4): 1383-1424. [11] LI T, PAN R H, ZHAO K. Global dynamics of a chemotaxis model on bounded domains with large data [J]. SIAM Journal on Applied Mathematics, 2012, 72: 417-443. [12] CHAE M, CHOI K, KANG K, et al. Stability of planar traveling waves in a Keller-Segel equation on an infinite strip domain [J]. Journal of Differential Equations, 2018, 265(1): 237-279. [13] LI D, LI T, ZHAO K. On a hyperbolic-parabolic system modeling chemotaxis [J]. Mathematical Models and Methods in Applied Sciences, 2011, 21(8): 1631-1650. [14] FAN J, ZHAO K. Blow up criteria for a hyperbolic-parabolic system arising from chemotaxis [J]. Journal of Mathematical Analysis and Applications, 2012, 394: 687-695. [15] PENG H Y, WANG Z A. On a parabolic-hyperbolic chemotaxis system with discontinuous data: well- posedness, stability and regularity[J]. Journal of Differential Equations, 2020, 268(8): 4374-4 415. [16] PENG H Y, WANG Z A, ZHU C J. Global weak solutions and asymptotics of a singular PDE-ODE chemotaxis system with discontinuous data[J/OL]. Science China-Mathematics, 2020[2020- 10-10]. https://engine.scichina.com/doi/10.1007/s11425-019-1754-0. [17] HOFF D. Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data [J]. Archive for Rational Mechanics and Analysis, 1995, 132(1): 1-14. [18] FRIEDMAN A. Partial Differential Equations[M]. New York: Holt, Rinehart Winston, 1969: 2-11. |
[1] | 黄明辉. 多时滞的非线性微分方程的渐近稳定性[J]. 广东工业大学学报, 2016, 33(01): 62-66. |
[2] | 徐林, 宋常修. 一类三阶时滞微分方程的稳定性和有界性[J]. 广东工业大学学报, 2015, 32(1): 128-132. |
[3] | 谢祖伟; 彭世国; 罗营华;. 带有Leakage时滞脉冲神经网络的渐近稳定性[J]. 广东工业大学学报, 2009, 26(1): 13-. |
|