广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (03): 16-24.doi: 10.12052/gdutxb.210076

• • 上一篇    下一篇

电商平台产品共同购买网络的影响因素研究

易闽琦, 刘洪伟, 高鸿铭   

  1. 广东工业大学 管理学院, 广东 广州 510520
  • 收稿日期:2021-05-20 出版日期:2022-05-10 发布日期:2022-05-19
  • 通信作者: 高鸿铭(1993-),男,博士研究生,主要研究方向为数据挖掘和消费者行为,E-mail:hm.gao.normal@gmail.com
  • 作者简介:易闽琦(1997-),女,硕士研究生,主要研究方向为消费者行为决策
  • 基金资助:
    国家自然科学基金资助项目(71671048);国家自然科学基金青年基金资助项目(71901075)

Research on the Factors Influencing the Co-purchase Network of Products on E-commerce Platforms

Yi Min-qi, Liu Hong-wei, Gao Hong-ming   

  1. School of Management, Guangdong University of technology, Guangzhou 510520, China
  • Received:2021-05-20 Online:2022-05-10 Published:2022-05-19

摘要: 共同购买网络的推荐系统应用越加广泛,仅基于网络内生结构变量研究其共同购买链接的经济意义已有局限,故加入网络口碑这一外生变量,进行更全面的分析。采用了社会网络方法中指数随机图模型进行建模,主要围绕产品销售量、产品入度、差评率和评论数4个方面因素,探究其对共同购买网络中共同购买链接形成的影响。结果显示,销售量、产品入度和评论数对共同购买链接形成的影响呈正比关系,而差评率则会显著地降低产品共同购买的几率。该指数随机图构建出的共同购买网络为在线电商平台管理网络口碑和推荐系统优化设计提供有益参考。

关键词: 推荐系统, 共同购买, 网络口碑, 网络分析, 指数随机图模型

Abstract: As the recommender system of co-purchase network is more and more widely used, there are certain limitations in studying the economic significance of co-purchase link only based on the endogenous structure variable of network. Therefore, the exogenous variable of network word-of-mouth is added to make a more comprehensive analysis. The exponential random graph model in the social network method is used to build the model, mainly focusing on the four factors of product sales volume, product indegree, poor evaluation rate and the number of comments, to explore its influence on the formation of co-purchase links in the co-purchase network. Among them, sales volume, product indegree and comments have a positive correlation with the formation of co-purchase links, but the rate of poor reviews will significantly reduce the probability of co-purchase. The co-purchase network constructed by the exponential random graph model provides a reference for the optimization design of online e-commerce platform management network word-of-mouth and recommendation system.

Key words: recommendation system, co-purchase, network word-of-mouth, network analysis, exponential random graph model

中图分类号: 

  • TP391.4
[1] 刘洪伟, 詹明君, 高鸿铭, 等. 基于消费者行为流视域的产品竞争市场结构分析[J]. 广东工业大学学报, 2021, 38(2): 26-33.
LIU H W, ZHAN M J, GAO H M, et al. A product competitive market structure analysis based on consumer behavioral stream [J]. Journal of Guangdong University of Technology, 2021, 38(2): 26-33.
[2] KUMAR A, HOSANAGAR K. Measuring the value of recommendation links on product demand [J]. Systems Research, 2019, 30(3): 819-838.
[3] CHEN H M. Do online recommendations matter? a multimodal investigation of amazon's co-purchase network [J]. Journal of Digital Information Management, 2015, 13(3): 176-184.
[4] LEE D, HOSANAGAR K. How do recommender systems affect sales diversity? A cross-category investigation via randomized field experiment [J]. Information Systems Research, 2019, 30(1): 239-259.
[5] CELMA Ò, CANO P. From hits to niches? or how popular artists can bias music recommendation and discovery[C]// 2nd KDD Workshop on Large-scale Recommender Systems and the Netflix Prize Competition 2008. Las Vegas NV: [s. n. ], 2008: 16-23.
[6] FLEDER D, HOSANAGAR K. Blockbuster culture's next rise or fall: the impact of recommender systems on sales diversity [J]. Management Science, 2009, 55(5): 697-712.
[7] STOCKLI D R, KHOBZI H. Recommendation systems and convergence of online reviews: the type of product network matters [J]. Decision Support Systems, 2021, 142(1): 13-24.
[8] LI F, DU T. Who is talking? an ontology-based opinion leader identification framework for word-of-mouth marketing in online social blogs [J]. Decision Support Systems, 2011, 51(1): 190-197.
[9] 莫赞, 罗敏瑶. 在线评论对消费者购买决策的影响研究——基于评论可信度和信任倾向的中介、调节作用[J]. 广东工业大学学报, 2019, 36(2): 54-61.
MO Z, LUO M Y. A research of the influence of online reviews on consumer purchase decision—based on mediation and adjustment of reliability comments and trust tendency [J]. Journal of Guangdong University of Technology, 2019, 36(2): 54-61.
[10] GONZALEZ S M, GIDUMAL J B, VALCARCEL B. Online customer reviews of hotels: as participation increases, better evaluation is obtained [J]. Cornell Hospitality Quarterly, 2013, 54(3): 274-283.
[11] PARK D H, LEE J. Ewom overload and its effect on consumer behavioral intention depending on consumer involvement [J]. Electronic Commerce Research and Applications, 2008, 7(4): 386-398.
[12] 刘洪伟, 梁周扬, 左妹华, 等. 利用消费者浏览行为识别品牌竞争关系研究[J]. 广东工业大学学报, 2019, 36(5): 1-67.
LIU H W, LIANG Z Y, ZUO M H, et al. Research on identifying brand competition relationships with consumer browsing behavior [J]. Journal of Guangdong University of Technology, 2019, 36(5): 1-67.
[13] 范梦婷, 刘洪伟, 高鸿铭, 等. 电子商务平台下的竞争产品市场结构研究[J]. 广东工业大学学报, 2019, 36(6): 32-37.
FAN M T, LIU H W, GAO H M, et al. A research on competitive product market structure of e-commerce platform [J]. Journal of Guangdong University of Technology, 2019, 36(6): 32-37.
[14] 王茜, 喻继军. 基于商品购买关系网络的多样性推荐[J]. 系统管理学报, 2020, 29(1): 62-72.
WANG X, YU J J. Diversity recommendation based on commodity purchasing network [J]. Journal of Systems Management, 2020, 29(1): 62-72.
[15] OESTREICHER-SINGER G, SUNDARARAJAN A. The visible hand? demand effects of recommendation networks in electronic markets [J]. Management Science, 2012, 48(11): 1963-1981.
[16] LIN Z J, GOH K Y, HENG C S. The demand effects of product recommendation networks: an empirical analysis of network diversity and stability [J]. MIS Quarterly, 2017, 41(2): 397-426.
[17] LIN Z J, WANG Q S. E-commerce product networks, word-of-mouth convergence, and product sales [J]. Journal of the Association for Information Systems, 2018, 19(1): 23-39.
[18] LESKOVEC J, ADAMIC L A, HUBERMAN B A. The dynamics of viral marketing [J]. ACM Journals, 2007, 1(1): 29-39.
[19] XU M, BHATTACHARYYA S. Inferring brand knowledge from online consumer associative brand networks[C]// The Thirty-Second AAAI Conference on Artificial Intelligence. New Orleans: AAAI Press, 2018: 113-120.
[20] KHALID J, ABBAS A, MAHMOOD M, et al. Significance of electronic word of mouth (e-wom) in opinion formation [J]. International Journal of Advanced Computer Science and Applications, 2020, 11(2): 537-544.
[21] KAYNAR O, HAMBURGER Y A. The effects of need for cognition on internet use revisited [J]. Computers in Human Behavior, 2008, 24(2): 361-371.
[22] YU X H, LIU Y, HUANG X J, et al. Mining online reviews for predicting sales performance: a case study in the movie domain[C]// IEEE Transactions on Knowledge and Data Engineering, 2012, 24(4): 720-734.
[23] PEZZUTI T, PIERCE M E, LEONHARDT J M. Does language homophily affect migrant consumers’ service usage intentions [J]. Journal of Services Marketing, 2018, 32(5): 581-591.
[24] GRANOVETTER M. The strength of weak ties [J]. American Journal of Sociology, 1973, 78(6): 1360-1380.
[25] 刘璇, 汪林威, 李嘉, 等. 科研合作网络形成机理——基于随机指数图模型的分析[J]. 系统管理学报, 2019, 28(3): 520-527.
LIU X, WANG L W, LI J, et al. Formation mechanism of scientific research cooperation network analysis based on exponential random graph model [J]. Journal of Systems Management, 2019, 28(3): 520-527.
[26] LOMI A, FONTI F. Networks in markets and the propensity of companies to collaborate: an empirical test of three mechanisms [J]. Economics Letters, 2012, 114(2): 216-220.
[1] 杜松华, 罗子婵, 陈扬森. 基于社会网络分析与反事实方法的价值共创研究——以小米虚拟社区为例[J]. 广东工业大学学报, 2020, 37(02): 11-21.
[2] 何炜俊, 周应堂. 结合强弱联系和兴趣的社交网络推荐算法[J]. 广东工业大学学报, 2019, 36(03): 39-46.
[3] 张巍, 黄健华, 刘冬宁, 滕少华, 刘子婷. 一种改进的结合评分和评论信息的推荐方法[J]. 广东工业大学学报, 2017, 34(06): 27-31,48.
[4] 汪岭, 傅秀芬, 王晓牡. 基于大数据集的混合动态协同过滤算法研究[J]. 广东工业大学学报, 2014, 31(3): 44-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!