广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (03): 70-76,82.doi: 10.12052/gdutxb.210081

• • 上一篇    下一篇

中国大陆GPS连续站时间序列噪声分析

郑博文1, 杜向峰2, 詹松辉1, 吴希文1, 王华1   

  1. 1. 广东工业大学 土木与交通工程学院, 广东 广州 510006;
    2. 广东工贸职业技术学院 测绘遥感信息学院, 广东 广州 510510
  • 收稿日期:2021-05-28 出版日期:2022-05-10 发布日期:2022-05-19
  • 通信作者: 王华(1978-),男,教授,主要研究方向为大陆形变与地震周期,E-mail:ehwang@163.com
  • 作者简介:郑博文(1997-),男,硕士研究生,主要研究方向为GPS数据处理
  • 基金资助:
    国家重点研发计划项目(2017YFC1500501);国家自然科学基金资助项目(41672205);中国地震科学试验场专项资助项目(2019CSES0010)

Noise Analysis of Continuous GPS Time Series in China Continent

Zheng Bo-wen1, Du Xiang-feng2, Zhan Song-hui1, Ng Alex Hay-Man1, Wang Hua1   

  1. 1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. School of Surveying and Remote Sensing Information Engineering, Guangdong College of Industry and Commerce, Guangzhou 510510, China
  • Received:2021-05-28 Online:2022-05-10 Published:2022-05-19

摘要: GPS位置时间序列中不仅存在白噪声,还存在大量的闪烁噪声。如果只使用纯白噪声的协方差矩阵来估计速度,速度的不确定性会被严重低估。利用频谱分析和极大似然估计的方法对中国大陆地壳运动观测网络的264个GPS连续站长达20 a的GPS坐标时间序列进行了噪声分析,并计算出每个测站速度的不确定性。结果表明东、北及垂直方向上呈现了不同的噪声特性。频谱分析估计的光谱指数高于极大似然估计的指数,但均在−1附近,表明主要的噪声模型是白噪声加闪烁噪声。使用不同的噪声模型计算的速度不确定性存在较大差异,在东、北及垂直方向上,最优噪声模型计算的速度不确定性分别是只使用白噪声模型的(11.5±2.1)倍、(12.9±2.9)倍和(14.8±3.7)倍。利用极大似然估计方法与FOGMEx方法所计算的速度差距不大,在东、北及垂直方向上,利用极大似然估计方法所计算的速度不确定性分别是FOGMEx方法的(2.8±1.5)倍、(1.5±0.7)倍和(3.5±2.8)倍。

关键词: GPS, 时间序列, 噪声模型, 闪烁噪声

Abstract: There is not only white noise in GPS position time series, but also a lot of flicker noise. If only the covariance matrix of pure white noise is used to estimate the velocity, the velocity accuracy will be seriously overestimated. Spectrum analysis and maximum likelihood estimation methods are used to analyze the 20-year GPS coordinate time series of 264 GPS continuous stations of the Chinese Continental Crustal Movement Observation Network, and the velocity accuracy of each station calculated. The results show that there are different noise characteristics in E, N and U directions. The spectral exponents estimated by spectral analysis are higher than those estimated by maximum likelihood, but they are all around −1, which indicates that the main noise model is white noise plus flicker noise. The velocity accuracy calculated by different noise models is quite different. In the east, the north, and the vertical directions, the velocity accuracy calculated by the optimal noise model is, respectively, (11.5±2.1), (12.9±2.9), and (14.8±3.7) times that of the white noise model only. The velocity between maximum likelihood estimation method and FOGMEx method is not very different. In the east, the north, and the vertical directions, the velocity accuracy calculated by the maximum likelihood estimation method is (2.8±1.5), (1.5±0.7), and (3.5±2.8) times that of the FOGMEx method, respectively.

Key words: GPS, time series, noise model, flicker noise

中图分类号: 

  • P223
[1] WANG M, SHEN Z. Present-day crustal deformation of continental China derived from GPS and its tectonic implications [J]. Journal of Geophysical Research:Solid Earth, 2020, 125(2): 1-22.
[2] ZHENG G, WANG H, WRIGHT T J, et al. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements [J]. Journal of Geophysical Research: Solid Earth, 2017, 122(11): 9290-9312.
[3] ZHANG J, BOCK Y, JOHNSON H, et al. Southern California permanent GPS geodetic array: error analysis of daily position estimates and site velocities [J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B8): 18035-18055.
[4] WILLIAMS S D P. The effect of coloured noise on the uncertainties of rates estimated from geodetic time series [J]. Journal of Geodesy, 2003, 76(9-10): 483-494.
[5] WILLIAMS S D P. Error analysis of continuous GPS position time series [J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B3): 1-19.
[6] GOUDARZI M A, COCARD M, SANTERRE R. Noise behavior in CGPS position time series: the eastern North America case study [J]. Journal of Geodetic Science, 2015, 5(1): 119-147.
[7] 田云锋, 沈正康, 李鹏. 连续GPS观测中的相关噪声分析[J]. 地震学报, 2010, 32(6): 696-704.
TIAN Y F, SHEN Z K, LI P. 2010. Analysis on correlated noise in continuous GPS observation [J]. Acta Seismologica Sinica, 2010, 32(6): 696-704.
[8] 李昭, 姜卫平, 刘鸿飞, 等. 中国区域IGS基准站坐标时间序列噪声模型建立与分析[J]. 测绘学报, 2012, 41(4): 496-503.
LI Z, JIANG W P, LIU H F, et al. Noise model establishment and analysis of IGS reference station coordinate time series inside China [J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(4): 496-503.
[9] 侯争, 郭增长, 杜久升, 等. 京津地区GNSS坐标时间序列噪声特性研究[J]. 测绘科学, 2019, 44(12): 71-75.
HOU Z, GUO Z Z, DU J S, et al. Research on noise characteristics of GNSS coordinate time series in Beijing-Tianjin region [J]. Science of Surveying and Mapping, 2019, 44(12): 71-75.
[10] 武曙光, 聂桂根, 李海洋, 等. 基于CATS软件的连续运行参考站噪声分析[J]. 测绘地理信息, 2018, 43(6): 52-55.
WU S G, NIE G G, LI H Y, et al. Noise analysis of continuously operating reference stations based on CATS [J]. Journal of Geomatics, 2018, 43(6): 52-55.
[11] 管雅慧, 王坦, 胡顺强, 等. 云南地区GPS基准站噪声模型分析[J]. 全球定位系统, 2020, 45(2): 72-77.
GUAN Y H, WANG T, HU S Q, et al. Analysis of noise model of GPS reference stations in Yunnan area [J]. GNSS World of China, 2020, 45(2): 72-77.
[12] 金波文, 王慧, 刘玉龙, 等. 中国沿海海洋站GNSS坐标时间序列噪声模型的建立与分析[J]. 大地测量与地球动力学, 2020, 40(5): 476-481.
JIN B W, WANG H, LIU Y L, et al. Establishment and analysis of GNSS coordinate time series noise model for coastal tide stations in China [J]. Journal of Geodesy and Geodynamincs, 2020, 40(5): 476-481.
[13] 邱亚辉, 薄志毅, 郎博, 等. 环渤海地区GPS台站时间序列分析[J]. 测绘通报, 2018, 495(6): 20-24.
QIU Y H, BO Z Y, LANG B, et al. Time Series analysis of GPS station in Bohai area [J]. Bulletin of Surveying and Mapping, 2018, 495(6): 20-24.
[14] LIU J N, GE M R. PANDA software and its preliminary result of positioning and orbit determination [J]. Wuhan University Journal of Natural Sciences, 2003, 8(2): 603-609.
[15] LIDBERG M, JOHANSSON J M, SCHERNECK H G, et al. Recent results based on continuous GPS observations of the GIA process in Fennoscandia from BIFROST [J]. Journal of Geodynamics, 2010, 50(1): 8-18.
[16] 姚宜斌, 冉启顺, 张豹. 改进的启发式分割算法在GNSS坐标时间序列阶跃探测中的应用[J]. 武汉大学学报(信息科学版), 2019, 44(5): 648-654.
YAO Y B, RAN Q S, ZHANG B. Application of improved heuristic segmentation algorithm to step detection of GNSS coordinate time series [J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 648-654.
[17] WILLIAMS S D P. CATS: GPS coordinate time series analysis software [J]. GPS Solutions, 2008, 12(2): 147-153.
[18] TEFERLE F N, WILLIAMS S D P, KIERULF H P, et al. A continuous GPS coordinate time series analysis strategy for high-accuracy vertical land movements [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2008, 33(3-4): 205-216.
[19] BOS M S, FERNANDES R, WILLIAMS S D P, et al. Fast error analysis of continuous GNSS observations with missing data [J]. Journal of Geodesy, 2013, 87(4): 351-360.
[20] MAO A, HARRISON C, DIXON T H. Noise in GPS coordinate time series [J]. Journal of Geophysical Research Atmospheres, 1999, 104(B2): 2797-2816.
[21] HERRING T. MATLAB tools for viewing GPS velocities and time series [J]. GPS Solutions, 2003, 7(3): 194-199.
[1] 危由兴, 罗向龙, 胡凌锋, 陈健勇, 梁颖宗, 杨智, 陈颖. 基于时间序列聚合的有机朗肯循环系统优化方法[J]. 广东工业大学学报, 2022, 39(06): 98-106.
[2] 李振福, 段伟, 李肇坤, 邓昭. 基于“21世纪海上丝绸之路”AIS数据的船舶交通流预测[J]. 广东工业大学学报, 2020, 37(06): 1-8.
[3] 余俊鹏, 何炽荣. GPS-RTK辅助近景摄影测量光束法平差及精度分析[J]. 广东工业大学学报, 2017, 34(06): 73-77.
[4] 后锐,罗智,伍嘉文. 深成指数时间序列的网络拓扑结构研究[J]. 广东工业大学学报, 2013, 30(3): 75-79.
[5] 邹锦华,陆波,周小峰. 全站仪进行跨海面高程测量的应用及验证[J]. 广东工业大学学报, 2012, 29(4): 22-26.
[6] 黄志坚; 傅惠南; 卜焰山; . 弹性浮动研磨机振动结构参数识别[J]. 广东工业大学学报, 2009, 26(3): 34-37.
[7] 张兴福; 于红波; . 模型拟合法进行GPS高程转换的研究及软件开发[J]. 广东工业大学学报, 2008, 25(3): 61-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!