广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (05): 29-37.doi: 10.12052/gdutxb.220049

• • 上一篇    下一篇

利用有益非线性因素的主动式悬架系统饱和PD-SMC跟踪方法

张梦华1, 刘强2, 陈纪旸3, 鹿全礼3, 张建成3   

  1. 1. 济南大学 自动化与电气工程学院,山东 济南 250022;
    2. 山东鲁软数字科技有限公司 智慧能源分公司,山东 济南 250000;
    3. 山东正中信息技术股份有限公司,山东 济南 250014
  • 收稿日期:2022-03-15 发布日期:2022-07-18
  • 作者简介:张梦华(1988−),女,副教授,博士,硕士生导师,主要研究方向为机电系统非线性控制方法设计,E-mail:zhangmenghua@mail.sdu.edu.cn
  • 基金资助:
    国家自然科学基金青年基金资助项目(61903155)

A Saturated PD-SMC Tracking Method for Active Suspension Systems by Employing Beneficial Nonlinearities

Zhang Meng-hua1, Liu Qiang2, Chen Ji-yang3, Lu Quan-li3, Zhang Jian-cheng3   

  1. 1. School of Electrical Engineering, University of Jinan, Jinan 250022, China;
    2. Shaodong Luruan Digital Technology Co., Ltd., Smart Energy Branch, Jinan 250000, China;
    3. Shandong Zhengzhong Information Technology Co., Ltd., Jinan 250014, China
  • Received:2022-03-15 Published:2022-07-18

摘要: 针对具有输入饱和的主动式悬架系统,通过利用所构建的仿生参考模型的非线性刚度和阻尼,设计了一种新颖的饱和PD−滑模控制方法(饱和PD-SMC方法)。所设计的控制方法具有以下几个优点:具有PD控制方法的简单结构;具有SMC方法针对模型不确定性和外部干扰的强鲁棒性;不需要传统SMC方法所要求的精确系统参数;同时充分考虑输入饱和的影响。在所设计的控制方法中,PD部分用于保证主动式悬架系统的稳定,SMC部分用于提供强鲁棒性,并引入饱和函数防止控制输入超过约束范围。利用李雅普诺夫方法保证了相应的稳定性分析。从多个实验结果可以看出,与现有的控制方法相比,所设计的控制方法显著提高了暂态性能,并节省了30.65%的控制能量。

关键词: 主动式悬架, PD-SMC, 饱和, 仿生参考模型

Abstract: Through purposely employing beneficial nonlinear stiffness and damping with a constructed bioinspired reference model, a novel saturated PD with sliding mode control method, (referred to as saturated PD-SMC method), is designed for active suspension systems under saturated control input constraints. The designed control method has several distinct benefits, including the simple structure of PD control method, strong robustness of SMC method with respect to model uncertainties and external disturbances, without requirements of exact system parameters associated with traditional SMC method, as well as taking input constraints into consideration. In the designed control method, the PD part is employed to stabilize the controlled active suspension system, the SMC part is applied to provide strong robustness, and the saturation functions are introduced to prevent the violation of control input constraints. The corresponding stability analysis is provided by Lyapunov techniques. Several experimental results show that, the designed control method dramatically improves transient performance in comparison with some existing methods, including decreasing control energy by 30.65% and improving ride comfort, which can achieve a satisfactory trade-off between costs and results for suspension system control.

Key words: active suspension systems, PD-SMC, saturation, bioinspired reference model

中图分类号: 

  • TB122
[1] KUMAR V, RANA K P S, KUMAR J, et al. Self-tuned robust fractional order fuzzy PD controller for uncertain and nonlinear active suspension system [J]. Neural Computing and Applications, 2018, 30(6): 1827-1843.
[2] SU Y, ZHENG C. Single saturated PD control for asymptotic attitude stabilization of spacecraft [J]. IET Control Theory and Applications, 2020, 14(19): 3338-3343.
[3] ZHANG Y, KIM D G, ZHAO Y, et al. PD control of a manipulator with gravity and inertia compensation using an RBF neural network [J]. International Journal of Control, Automation and Systems, 2020, 18(12): 3083-3092.
[4] TENG L, GULL M A, BAI S P. PD-based fuzzy sliding mode control of a wheelchair exoskeleton robot [J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(5): 2546-2555.
[5] KOLATHAYA S. Local stability of PD controlled bipedal walking robots[J]. Automatica, 2020, 114: 108841
[6] ZHENG C, SU Y, MERCORELLI P. A simple nonlinear PD control for faster and high-precision positioning of servomechanisms with actuator saturation [J]. Mechanical Systems and Signal Processing, 2019, 121: 215-226.
[7] DESHPANDE V S, MOHAN B, SHENDGE P D, et al. Disturbance observer based sliding mode control of active suspension systems [J]. Journal of Sound and Vibration, 2014, 333: 2281-2296.
[8] CHEN H, LIU Y, LIU L, et al. Anti-saturation-based adaptive sliding-mode control for active suspension systems with time-varying vertical displacement and speed constraints[J]. IEEE Transactions on Cybernetics, in press, doi: 10.1109/TCYB.2020.3042613.
[9] RAJENDIRAN S, LAKSHMI P. Performance analysis of fractional order terminal SMC for the half car model with random road input [J]. Journal of Vibration Engineering and Technologies, 2020, 8(4): 687-597.
[10] SONG J, NIU Y, ZOU Y. A parameter-dependent sliding mode approach for finite-time bounded control of uncertain stochastic systems with randomly varying actuator faults and its application to parallel active suspension system [J]. IEEE Transactions on Industrial Electronics, 2018, 65(10): 8124-8132.
[11] LI J, JING X, LI Z. Fuzzy adaptive control for nonlinear suspension systems based on a bioinspired reference model with deliberately designed nonlinear damping [J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8713-8723.
[12] ZHANG M, JING X. Switching logic-based saturated tracking control for active suspension systems based on disturbance observer and bioinspired X-dynamics [J]. Mechanical Systems and Signal Processing, 2021, 155: 107611.
[13] ZHANG M, JING X, WANG G. Bioinspired nonlinear dynamics-based adaptive neural network control for vehicle suspension systems with uncertain/unknown dynamics and input delay[J]. IEEE Transactions on Industrial Electronics, in press, doi: 10.1109/TIE.2020.3040667.
[14] SUN N, FANG Y, CHEN H. Tracking control for magnetic-suspension systems with online unknown mass identification [J]. Control Engineering Practice, 2017, 58: 242-253.
[15] PAN H, SUN W, GAO H, et al. Nonlinear tracking control based on extended state observer for vehicle active suspensions with performance constraints [J]. Mechatronics, 2015, 30: 363-370.
[1] 陈红锋, 何元烈, 林伟, 王晓锋. 基于电感法无刷直流电机起动方法的优化设计[J]. 广东工业大学学报, 2015, 32(2): 86-90.
[2] 杨承鸿 1,黄敏1,杨菁2. 单甘酯在植脂末中的应用[J]. 广东工业大学学报, 2012, 29(1): 74-77.
[3] 吉小明; . 饱和多孔岩体中温度场渗流场应力场耦合分析[J]. 广东工业大学学报, 2006, 23(3): 46-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!